数学卷14:设x,y∈R,且xy≠0,则[x²+(1/y²)]×[(1/x²)+4y
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 21:17:32
数学卷14:设x,y∈R,且xy≠0,则[x²+(1/y²)]×[(1/x²)+4y²]的最小值为( )
设x,y∈R,且xy≠0,则[x²+(1/y²)]×[(1/x²)+4y²]的最小值为( 9)
z=[x²+(1/y²)]×[(1/x²)+4y²]
=[(x²y²+1)/y²][(1+4x²y²)/x²]
=(x²y²+1)(1+4x²y²)/(x²y²)
=(x²y²+1+4x⁴y⁴+4x²y²)/(x²y²)
=1+1/(x²y²)+4x²y²+4
=1/(x²y²)+4x²y²+5≧(2√4)+5=4+5=9
即当1/(x²y²)=4x²y²,也就是x⁴y⁴=1/4时z获得最小值9.
z=[x²+(1/y²)]×[(1/x²)+4y²]
=[(x²y²+1)/y²][(1+4x²y²)/x²]
=(x²y²+1)(1+4x²y²)/(x²y²)
=(x²y²+1+4x⁴y⁴+4x²y²)/(x²y²)
=1+1/(x²y²)+4x²y²+4
=1/(x²y²)+4x²y²+5≧(2√4)+5=4+5=9
即当1/(x²y²)=4x²y²,也就是x⁴y⁴=1/4时z获得最小值9.
设x,y∈R+且xy-(x+y)=1,则x+y的最小值为______.
1、设集合A={x—y,x+y,xy},B={x²+y²,x²—y²,0},且A
设集合M={(x,y)|x+y=1,x∈R,y∈R},N={(x,y)|x²-y=0,x,y∈R} 则集合M∩
设x,y属于R+,且4/x+1/y=1则xy的最小值是-----
设P={y[y=-x²+1,x∈R}.Q={y[y=2^x,x∈R},则( )
已知x,y∈R+,且x+y=1,求证:xy+1xy≥174
已知xy都是正实数且满足4x²+4xy+y²+2x+y-6=0则x(1-y)的最小值
x²+xy/(x-4y)(x+y),其中x=4,y=-1
已知x²-4xy+4y²=0,且xy≠0,那么x-y/x+y
设实数x,y满足x²+1/2y²4-xy+2y=0.则x=___,y=___
设x-2的绝对值+(y+1/4)平方=0,试求代数式x²(x²-xy+y)-x(x³-2x
(1).设A=2X²-3Xy+y²+X-3y,B=4X²-6xy+2y²+4X-