在直线l的一侧画一个半圆T,C,D是T上的两点,T上过C和D的切线分别交l于B和A,半圆的圆心在线段BA上,E是线段AC
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 08:14:10
在直线l的一侧画一个半圆T,C,D是T上的两点,T上过C和D的切线分别交l于B和A,半圆的圆心在线段BA上,E是线段AC和BD的交点,F是l上的点,EF垂直l.求证:EF平分∠CFD.
证明:如图,设AD与BC相交于点P,用O表示半圆T的圆心,
过P作PH丄l于H,连OD,OC,OP.由题意知Rt△OAD∽Rt△PAH,
于是有
AH
AD=
HP
DO.
类似地,Rt△OCB∽Rt△PHB,
则有
BH
BC=
HP
CO.
由CO=DO,有
AH
AD=
BH
BC,从而
AH
HB•
BC
CP•
PD
DA=1.
由塞瓦定理的逆定理知三条直线AC,BD,PH相交于一点,即E在PH上,点H与F重合.
因∠ODP=∠OCP=90°,所以O,D,C,P四点共圆,直径为OP.
又∠PFC=90°,从而推得点F也在这个圆上,
因此∠DFP=∠DOP=∠COP=∠CFP,
所以EF平分∠CFD.
过P作PH丄l于H,连OD,OC,OP.由题意知Rt△OAD∽Rt△PAH,
于是有
AH
AD=
HP
DO.
类似地,Rt△OCB∽Rt△PHB,
则有
BH
BC=
HP
CO.
由CO=DO,有
AH
AD=
BH
BC,从而
AH
HB•
BC
CP•
PD
DA=1.
由塞瓦定理的逆定理知三条直线AC,BD,PH相交于一点,即E在PH上,点H与F重合.
因∠ODP=∠OCP=90°,所以O,D,C,P四点共圆,直径为OP.
又∠PFC=90°,从而推得点F也在这个圆上,
因此∠DFP=∠DOP=∠COP=∠CFP,
所以EF平分∠CFD.
如图,AB是半圆O的直径,过半圆O上的一点D分别作AB的垂线与半圆O的切线,交直线AB于点E与点C,
如图已知c是以AB为直径的半圆O上,CF⊥AB于点F,直线AC与过B点的切线相交于点D,E是BD的中点,连接AE交CF于
如图,AB为定长的线段,作半圆OAB.P为半圆上一点,过P点作切线DC交过A点的切线AD、过B点的切线BC交于D、C.连
AB为半圆O的直径,点C在半圆O上,过点O作BC的平行线,交AC于点E,交过点A的直线于点D,且角D=角BAC 急
AB为半圆O的直径,点C在半圆O上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC
AB为半圆O的直径,点C在半圆O上,过点O作BC的平行线,交AC于点E,交过点A的直线于点D,且角D=角BAC
已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1
设AC=a,CB=b,CD⊥AB交○O上半圆于D,过C作CE⊥OD交OD于E,利用DC≥DE写出一个含a,b的不等式是?
如图7,在△ABC中,AB=AC,直线L过点A,分别过点B,C做线段BC的垂线交L于D,E两点,求证;AD=AE
如图,AB是半圆的直径,D是AB上一点,CD⊥AB,CD交半圆于点E,CT是半圆的切线 ,T是切点.
如图已知C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点切线相交于点D,E为CH中点,连接AE并延长交
如图,AB是半圆的直径,〇 是圆心,C是半圆上一点、E是弧AC的中点,OE交弦AC于D若AC等于