如图,等腰直角三角形ACB,O为斜边AB的中点,点E、F分别在AC、BC上,且角EOF为45°.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:30:27
如图,等腰直角三角形ACB,O为斜边AB的中点,点E、F分别在AC、BC上,且角EOF为45°.
求,
(1)点E、F在边AC上时[如图(1)]
(2)点E在AC上、点F在BC的延长线上时[如图(2)],
CE、EF、BF的数量关系.
求,
(1)点E、F在边AC上时[如图(1)]
(2)点E在AC上、点F在BC的延长线上时[如图(2)],
CE、EF、BF的数量关系.
以C点为原点建立坐标系,E点坐标为(0,y)
F点坐标为(x,0) o点坐标为(a,a)(假设AC边长为2a)
OE(a,a-y),OF(a-x,a)
根据 两个向量的点积除以 这两个向量的长度的乘积等于这两个向量的夹角的余弦.
两边平方然后把分母移到右边 得:
(a(a-x)+a(a-y))^2=0.5(a^2+(a-y)^2)*(a^2+(a-x)^2)
左边平方拆开,右边最外面((a-x),(a-y)当成整体先不要动)的括号乘开.
注意观测 等式两边
可以化简为
(a(a-x)+a(a-y))^2=(a^2-(a-y)(a-x))^2
分两种情况:
两边开平方,有负号和没有.
接下来 就可以得到x,y的关系,EF的平方的x的平方加y的平方.
于是 自己做下调整 就可以得到上面的关系了
将右边
F点坐标为(x,0) o点坐标为(a,a)(假设AC边长为2a)
OE(a,a-y),OF(a-x,a)
根据 两个向量的点积除以 这两个向量的长度的乘积等于这两个向量的夹角的余弦.
两边平方然后把分母移到右边 得:
(a(a-x)+a(a-y))^2=0.5(a^2+(a-y)^2)*(a^2+(a-x)^2)
左边平方拆开,右边最外面((a-x),(a-y)当成整体先不要动)的括号乘开.
注意观测 等式两边
可以化简为
(a(a-x)+a(a-y))^2=(a^2-(a-y)(a-x))^2
分两种情况:
两边开平方,有负号和没有.
接下来 就可以得到x,y的关系,EF的平方的x的平方加y的平方.
于是 自己做下调整 就可以得到上面的关系了
将右边
三角形ABC为等腰直角三角形,AB=AC,D为斜边BC上的中点,E,F分别为AB,AC边上的点,且DE垂直DF.
△abc为等腰直角三角形,ab=ac,d为斜边bc的中点,e、f分别为ab、ac上的点,且de⊥df.
如图,在等腰直角三角形ABC中,D为斜边BC的中点,点E,F分别在AB,AC上,且DE=DF,DE⊥DF,作EG⊥AB交
如图,△ABC为等腰直角三角形,AB=AC,D为斜边BC上的中点,E,F分别为AB,AC边上的点,且DE⊥DF,若BE=
如图,△ABC为等腰直角三角形,AB=AC.D为斜边BC的中点,E、F分别为AB、AC边上的点,且DE⊥DF,若BE=8
如图,△ABC为等腰直角三角形,AB=AC,D为斜边BC的中点,E,F分别为AB,AC边上的点,且DE⊥DF,若BE=1
初二勾股定理习题如图,△ABC为等腰直角三角形,AB=AC,D为斜边BC的中点,E、F分别为AB、AC边上的点,且DE⊥
在等腰直角三角形ABC中,D为斜边BC的中点,点E,F分别在AB,AC上,且DE=DF,DE⊥DF,做EG⊥AB交BC于
已知,如图,等腰直角三角形ABC中,角A=90°,D为BC中点,E,F分别为AB,AC上的点,且满足EA=CF,求证:D
如图,在等腰直角三角形ABC中,∠B=90°,AB=BC,O是斜边AC的中点,P是斜边AC上的一个动点,D为射线BC上的
如图,在Rt△ABC在,∠ACB=90,AC=BC,E,F为AB上的两点,且∠EOF=45度
已知.如图等腰直角三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、、AC上的点,且满足EA=CF.求证DE