假设有7个物品,它们的重量和价值如下表所示.若这些物品均可以被分割,且背包容量M=140,使用贪心算法求解此背包问题.W
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 13:30:02
假设有7个物品,它们的重量和价值如下表所示.若这些物品均可以被分割,且背包容量M=140,使用贪心算法求解此背包问题.W(35,30,50,60,40,10,25)p(10,40,30,50,35,40,30)
w(i)=(35,30,50,60,40,10,25)
p(i)=(10,40,30,50,35,40,30)
p(i) / w(i)=( 2/7, 4/3, 3/5, 5/6, 7/8 ,4, 6/5)
x(i)=(1, 1, 0 ,0 ,1 ,1 ,1)
(求和公式)w(i)x(i0=35*1+30*1+50*0+60*0+40*1+10*1+25*1=140
(求和公式)p(i)x(i)=10*1+40*1+30*0+50*0+35*1+40*1+30*1=155
即背包的最优解是 (1, 1, 0 ,0 ,1 ,1 ,1)
最大收益是155
(大概就是这样吧,不知道有没有计算错误,自己再看一下吧)
p(i)=(10,40,30,50,35,40,30)
p(i) / w(i)=( 2/7, 4/3, 3/5, 5/6, 7/8 ,4, 6/5)
x(i)=(1, 1, 0 ,0 ,1 ,1 ,1)
(求和公式)w(i)x(i0=35*1+30*1+50*0+60*0+40*1+10*1+25*1=140
(求和公式)p(i)x(i)=10*1+40*1+30*0+50*0+35*1+40*1+30*1=155
即背包的最优解是 (1, 1, 0 ,0 ,1 ,1 ,1)
最大收益是155
(大概就是这样吧,不知道有没有计算错误,自己再看一下吧)
算法分析与设计题目 请求解0/1/2背包问题:有1个背包、其容量为C,有n种物品(每个物品种类i都自己的重量wi和价值v
01背包问题的贪心K阶优化算法设计(物品不可拆分)
用贪心算法求解背包问题的最优解.
C语言算法求助:假设有这么一组物品,其大小和价值如下表所示:物品编号\x05大小\x05价值1\x05 2\x0532\
贪心算法 部分背包问题
分别用贪心算法和动态规算法求解0/1背包问题的最优解和最大收益
C语言 贪心算法求背包问题
贪心算法 0 1 没有价值 只需装入的总量最大且不超过背包可容纳的量求解答
贪心算法背包问题设有n=8个体积分别为54,45,43,29,23,21,14,1的物体和一个容积为C=110的背包,问
分布估计算法求解0-1背包问题算法的C语言程序;
有八个重量不同的物品,每个物品的重量都是整数且都不超过15克,小明想以最少的次数用天平称出其中最重的物品,他用了如下的测
一道物理题为:旅游登山时,背包中的物品有轻有重,怎样摆放能使人不容易向后倾到?把重的物品放到背包上部.说废话的走开!