作业帮 > 数学 > 作业

如果多项式x^3+mx可分解因式为x(x+n)(x-1/2),那么mn的值为多少

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 17:11:35
如果多项式x^3+mx可分解因式为x(x+n)(x-1/2),那么mn的值为多少
如果多项式x^3+mx可分解因式为x(x+n)(x-1/2),那么mn的值为多少
x(x+n)(x-1/2)=x³+mx
等式左边展开,得
x³+(n-1/2)x² -nx/2=x³+mx
整理,得
(n -1/2)x²-(m +n/2)x=0
要对任意实数x,等式恒成立,只有
n-1/2=0
m+n/2=0
解得n=1/2 m=-1/4
mn=(1/2)(-1/4)=-1/8.