作业帮 > 数学 > 作业

求点O到三角形ABC角的距离和最小值 点O的位置

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 10:27:44
求点O到三角形ABC角的距离和最小值 点O的位置
求点O到三角形ABC角的距离和最小值 点O的位置
在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.
解法如下:分别以AB AC为边向外侧作正三角形ABD ACE 连结CD BE交于一点,则该点 即为所求P点.
证明:如下图所示.连结PA、PB、PC,在△ABE和△ACD中,AB=AD AE=AC ∠BAE=∠BAC+60° ∠DAC=∠BAC+60°=∠BAE ∴△ABE全等△ACD.
∴ ∠ABE=∠ADC 从而A、D、B、P四点共圆
∴∠APB=120° ,∠APD=∠ABD=60°
同理:∠APC=∠BPC=120°
以P为圆心,PA为半径作圆交PD于F点,连结AF,
以A为轴心将△ABP顺时针旋转60°,已证∠APD=60°
∴△APF为正三角形.∴不难发现△ABP与△ADF重合.
∴BP=DF PA+PB+PC=PF+DF+PC=CD
另在△ABC中任取一异于P的点G ,同样连结GA、GB、GC、GD,以B为轴心
将△ABG逆时针旋转60°,记G点旋转到M点..
则△ABG与△BDM重合,且M或 在 线 段DG上 或 在DG外.
GB+GA=GM+MD≥GDGA+GB+GC≥GD+GC>DC.
从而CD为最短的线段.