操作与探究探索:在如图1至图3中,△ABC的面积为a.(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 03:12:56
操作与探究
探索:在如图1至图3中,△ABC的面积为a.
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、若△ACD的面积为S1,则S1=______(用含a的代数式表示);
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE、若△DEC的面积为S2,则S2=______(用含a的代数式表示);
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3)、若阴影部分的面积为S3,则S3=______(用含a的代数式表示).
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次、可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的______倍.
探索:在如图1至图3中,△ABC的面积为a.
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、若△ACD的面积为S1,则S1=______(用含a的代数式表示);
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE、若△DEC的面积为S2,则S2=______(用含a的代数式表示);
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3)、若阴影部分的面积为S3,则S3=______(用含a的代数式表示).
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次、可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的______倍.
(1)∵CD=BC,△ABC的面积为a,△ABC与△ACD的高相等,
∴S1=S△ABC=a;
(2)分别过A、E作AG⊥BD,EF⊥BD,G、F为垂足,则AG∥EF,
∵A为CE的中点,∴AG=
1
2EF,
∵BC=CD,
∴S2=2S1=2a;
(3)∵△BDF的边长BD是△ABC边长BC的2倍,两三角形的两边互为另一三角形两边的延长线,
∴S△BDF=2S△ABC,
∵△ABC面积为a,∴S△BDF=2a.
同理可得,S△ECD=2a,S△AEF=2a,∴S3=S△BDF+S△ECD+S△AEF=2a+2a+2a=6a.
∵S3=S△BDF+S△ECD+S△AEF=6a,
∴S△EDF=S3+S△ABC=6a+a=7a,
∴
S△DEF
S△ABC=
7a
a=7,
∴扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.
∴S1=S△ABC=a;
(2)分别过A、E作AG⊥BD,EF⊥BD,G、F为垂足,则AG∥EF,
∵A为CE的中点,∴AG=
1
2EF,
∵BC=CD,
∴S2=2S1=2a;
(3)∵△BDF的边长BD是△ABC边长BC的2倍,两三角形的两边互为另一三角形两边的延长线,
∴S△BDF=2S△ABC,
∵△ABC面积为a,∴S△BDF=2a.
同理可得,S△ECD=2a,S△AEF=2a,∴S3=S△BDF+S△ECD+S△AEF=2a+2a+2a=6a.
∵S3=S△BDF+S△ECD+S△AEF=6a,
∴S△EDF=S3+S△ABC=6a+a=7a,
∴
S△DEF
S△ABC=
7a
a=7,
∴扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.
探索:在如图1至图3中,△ABC的面积为a.(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD
探索:在图1至图3中,已知△ABC的面积为a . (1)如图1,延长△ABC的边BC到点D,使CD=BC,连结DA.若△
在如图一中,三角形ABC的面积为a,探索:(1)如图一所示,延长三角形ABC的边BC到点D,使CD=2BC,联结DA
如图12-1,延长△ABC的边BC到点D,使CD=BC,连结DA.若△ACD的面积为S1...
极难初一数学题目.探索:在图24-1至图24-3中,△ABC的面积为a.(1) 如图24-1,延长△ABC的边BC到点D
如图①,延长△ABC的边BC到点D,使CD=2BC,连接DA,若△ACD的面积为S1,则S1 = (用的代数式表示);
延长三角形ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=( );用含a的式子表示
如图,已知△ABC,延长BC到点D,使CD=BC,取AB中点F,连接FD交AC于点E,(1)求AE/AC的值 (2)若A
如图,△ABC是等腰三角形,AB=AC,角A=60°,D为AC边的中点,延长BC到点E,使CE=CD,连接BD、DE.若
如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.
已知,如图,在△ABC中,D为BC上的一点,延长AD到点E,连接BE、CE,∠ABD+1/2∠DBE=90°,∠1=∠2
如图,△ABC是等边三角形,D为AC的中点,延长BC到点E,使CE=CD,试求出∠BDE的度数.