作业帮 > 数学 > 作业

高一直线与圆设圆满足1.截Y轴所得的弦长为2 2.被x轴分成的两段弧长之比为3:1在满足1.2.的情况下,求圆心到L:x

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 13:16:34
高一直线与圆
设圆满足1.截Y轴所得的弦长为2 2.被x轴分成的两段弧长之比为3:1在满足1.2.的情况下,求圆心到L:x-2y=0的距离最短的圆的方程
高一直线与圆设圆满足1.截Y轴所得的弦长为2 2.被x轴分成的两段弧长之比为3:1在满足1.2.的情况下,求圆心到L:x
设圆心坐标为(a,b)
根据第一个条件:“1.截Y轴所得的弦长为2 2”,过圆心向y轴作垂线,得到圆心横坐标a=根号下(r^2-121)
根据第二个条件:“被x轴分成的两段弧长之比为3:1“所以所截得的x轴对应的圆心角是90度;所以构造出的直角三角形是等腰直角三角形,得到圆心纵坐标为b=根号下(2)* r/2
所以圆心坐标为(根号下(r^2-121),根号下(2)* r)
再由点到直线的距离公式得到:距离=【根号下(r^2-121)-根号下(2)* r】/根号下(5)
根据条件,要使得距离最小:可以得到半径r=根号下(242),代入圆心坐标可以得到圆心坐标,从而圆的方程可以直接写出了,我就不写了,没有公式编辑器,写公式太麻烦了
设圆满足:1.截y轴所得弦长为2;2.被x轴分成两段弧的比值为3:1 在满足上述条件的所有圆中,求圆心到直线l:x-2y 设圆满足 截y轴所得弦长为2.被x轴分成两段圆弧,共弧长之比为3:1.圆心到直线L:x-2y=0的距离为5分之根 设圆满足:截Y轴所得的弦长为2,被X轴分成两段弧,其弧长之比为3:1,在满足条件的所有圆中,求圆心到直线L:X-2Y=0 圆已知圆满足:1.截y轴所得弦长为2.2.被x轴分成两段圆弧,其弧长的比为3:13.圆心到直线l:x-2y=0距离最小求 设圆满足(1)截y轴所得弦长为2(2)被x轴分成两段圆弧,其弧长比为3:1,在满足(1)(2)的所有圆中,求圆心到直线L 知圆满足(1)截y轴所得弦长为2;⑵被x轴分成2圆弧比3:1(3)圆心到直线l:x-2y=0的距离为(根号5/5),求圆 已知圆满足:①截y轴所得弦长为2,②被x轴分成两段圆弧,其弧长比为3:1.在满足条件的所有圆中,求圆心到直线l:x-2y 设圆满足,截Y轴所得弦长为2;被X轴分成两段圆弧,孤长比为2:1;圆心到直线l:x-2y=0的距离为五分之根号五,求圆的 设圆满足:截Y轴所得弦长为2且被X轴分成两段圆弧,其弧长的比3:1,在满足条件的圆中.求圆心到直线X-2Y=0的... 圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,满足条件12 求圆心到直线x-2y=0的距离最小的方程. 已知圆满足:截y轴所得弦长为2;被x周分成两段圆弧,其弧长之比为3:1;圆心到直线x-2y=0的距离为根号5/5 15.设圆满足:①截y轴所得弦长为2;②被x轴分成两段弧,其弦长之比为3:1;③圆心到直线l:x-2y=0的距离为√5/