设函数f(x)=p(x-1/x)-2lnx,g(x)=2e/x(p是实数,e是自然对数的底数)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 20:07:55
设函数f(x)=p(x-1/x)-2lnx,g(x)=2e/x(p是实数,e是自然对数的底数)
若直线l与函数F(X),g(x)都相切,且与函数f(x)的图象相切于点(1,0),求p的值
要求用两种方法进行解答,
若直线l与函数F(X),g(x)都相切,且与函数f(x)的图象相切于点(1,0),求p的值
要求用两种方法进行解答,
(1)f'(x)=p+p/x^2-2/x,
设直线L的方程为y=kx+b.
与函数f(x)的图像相切于点(1,0).
则k=2p-2.
b=-k=2-2p.
所以直线方程为y=(2p-2)x+2-2p.
又直线L与函数f(X),g(X)的图像都相切,
可得交点方程为(2p-2)x+2-2p=2e/x
(2p-2)x^2+(2-2p)x-2e=0.
△=(2-2p)^2+8(2p-2)e=0
p=1(舍去)或p=1-4e.
因为p=1时,方程无解.
(2) 设直线L的方程为y=k(x-1)
因为直线L与方程g(X)的图像相切
联立g(x)=y=2e/x 和 y=k(x-1) 消去y 可得 2e=kx^2-kx
△=k^2+8ek=0 解得 k=-8e 或 k=0(舍去)
所以直线L的方程为y=-8e(x-1) 又直线L与方程F(x)的图像相切
F'(x)=p+p/x^2-2/x
所以F' (1)=2p-2=-8e 解得 p=1-4e
设直线L的方程为y=kx+b.
与函数f(x)的图像相切于点(1,0).
则k=2p-2.
b=-k=2-2p.
所以直线方程为y=(2p-2)x+2-2p.
又直线L与函数f(X),g(X)的图像都相切,
可得交点方程为(2p-2)x+2-2p=2e/x
(2p-2)x^2+(2-2p)x-2e=0.
△=(2-2p)^2+8(2p-2)e=0
p=1(舍去)或p=1-4e.
因为p=1时,方程无解.
(2) 设直线L的方程为y=k(x-1)
因为直线L与方程g(X)的图像相切
联立g(x)=y=2e/x 和 y=k(x-1) 消去y 可得 2e=kx^2-kx
△=k^2+8ek=0 解得 k=-8e 或 k=0(舍去)
所以直线L的方程为y=-8e(x-1) 又直线L与方程F(x)的图像相切
F'(x)=p+p/x^2-2/x
所以F' (1)=2p-2=-8e 解得 p=1-4e
设函数f(x)=p(x-1/x)-2Inx,g(x)=2e/x(p是实数,e是自然对数的底数)
设函数f(x)=p(x-1/x)-2Inx,g(x)=2e/x(p是实数,e为自然对数的底数)
设函数f(x)=p(x-1/x)-Inx,g(x)=2e/x(p是实数,e为自然对数的底数)
设函数f(x)=e^x,g(x)=-x²/4,其中e是自然对数的底数
已知p:函数f(x)=(x-2)e^x(e是自然对数的底数),在(m,2m)上市单调函数;q:"x^2-2x
设函数f(x)=e^x(e 为自然对数的底数),g(x)=x^2-x,记h(x)=f(x)+g(x) .
已知函数f(x)=(x^2+a)/e^x(e是自然对数的底数)
已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
已知函数f(x)=-e^x,g(x)=lnx,e为自然对数的底数求证:方程f(x)=g(x)有唯一实数根
已知函数f(x)=ax-lnx. ,g(x)=lnx/x,定义域是(0,e],e是自然对数的底数,a属于R
已知a∈R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
已知a∈R,函数f(x)=a/x+lnx-1,g(x)=xlnx-2x(其中e为自然对数的底数).