来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 11:59:57
微分方程y'=y/x+e^(y/x)的通解为
令y/x=u,
则y'=(xu)'=u+xu'
代入原方程得:u+xu'=u+e^u
xdu/dx=e^u
du/e^u=dx/x
-e^(-u)=lnx+c1
-e^(-y/x)=lnx+c1
y=-xln(c-lnx)
再问: 倒数第二步是怎样变成倒数第1步的请问?
再答: 就是由e^(-y/x)=-c1-lnx, 两边取对数 -y/x=ln(-c1-lnx) -c1=c,