作业帮 > 数学 > 作业

如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 10:45:49
如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.

(1)求证:EF+
1
2
如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.
(1)证明:如图1,过点F作FM⊥AB于点M,在正方形ABCD中,AC⊥BD于点E.
∴AE=
1
2AC,∠ABD=∠CBD=45°,
∵AF平分∠BAC,
∴EF=MF,
又∵AF=AF,
∴Rt△AMF≌Rt△AEF,
∴AE=AM,
∵∠MFB=∠ABF=45°,
∴MF=MB,MB=EF,
∴EF+
1
2AC=MB+AE=MB+AM=AB.
(2)E1F1
1
2A1C1与AB三者之间的数量关系:E1F1+
1
2A1C1=AB
证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,
∵A1F1平分∠BA1C1,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1
又∵A1F1=A1F1,∴Rt△A1E1F1≌Rt△A1PF1
∴A1E1=A1P,
同理Rt△QF1C1≌Rt△E1F1C1
∴C1Q=C1E1
由题意:A1A=C1C,
∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB,
∵PB=PF1=QF1=QB,
∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1
即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1
∴E1F1+
1
2A1C1=AB.
(3)设PB=x,则QB=x,
∵A1E1=3,QC1=C1E1=2,
Rt△A1BC1中,A1B2+BC12=A1C12
即(3+x)2+(2+x)2=52
∴x1=1,x2=-6(舍去),
∴PB=1,
∴E1F1=1,
又∵A1C1=5,
由(2)的结论:E1F1+
1
2A1C1=AB,
∴AB=
7
2,
∴BD=
7
2
2.