设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z2-2y2/(x+z)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 15:26:08
设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z2-2y2/(x+z)
请注意括号的正确使用,以免造成误解.
不失一般性,令x≧y≧z>0.则:
x^2≧y^2≧z^2、x+y≧x+z≧y+z,∴1/(y+z)≧1/(x+z)≧1/(x+y).
考查下列两组数:x^2≧y^2≧z^2、1/(y+z)≧1/(x+z)≧1/(x+y).
由排序不等式:同序和不小于乱序和. 得:
x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≧y^2/(y+z)+z^2/(x+z)+x^2/(x+y)、
x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≧z^2/(y+z)+x^2/(x+z)+y^2/(x+y).
上述两式相加,得:
2x^2/(y+z)+2y^2/(x+z)+2z^2/(x+y)
≧(y^2+z^2)/(y+z)+(z^2+x^2)/(x+z)+(x^2+y^2)/(x+y),
∴(2z^2-x^2-y^2)/(x+y)+(2x^2-y^2-z^2)/(y+z)≧(x^2+z^2-2y^2)/(x+z).
不失一般性,令x≧y≧z>0.则:
x^2≧y^2≧z^2、x+y≧x+z≧y+z,∴1/(y+z)≧1/(x+z)≧1/(x+y).
考查下列两组数:x^2≧y^2≧z^2、1/(y+z)≧1/(x+z)≧1/(x+y).
由排序不等式:同序和不小于乱序和. 得:
x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≧y^2/(y+z)+z^2/(x+z)+x^2/(x+y)、
x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≧z^2/(y+z)+x^2/(x+z)+y^2/(x+y).
上述两式相加,得:
2x^2/(y+z)+2y^2/(x+z)+2z^2/(x+y)
≧(y^2+z^2)/(y+z)+(z^2+x^2)/(x+z)+(x^2+y^2)/(x+y),
∴(2z^2-x^2-y^2)/(x+y)+(2x^2-y^2-z^2)/(y+z)≧(x^2+z^2-2y^2)/(x+z).
已知x2+y2+z2≤2x+4y-6z-14,求x2+y2+z2的值.
因式分解X2(Y+Z)+Y2(Z+X)+Z2(X+Y)-(X3+Y3+Z3)-2XYZ
x,y,z为正实数 求证 x2/(y2+z2+yz)+y2/(z2+x2+zx)+z2/(x2+y2+xy)>=1
已知:实数 x y z 不全为 0 求证:√x2+xy+y2 + √y2+yz+z2 + √z2+zx+x2 >3/2
已知2x+3y+4z=10,求x2+y2+z2的最小值.
已知x+y+z=2,x2+y2+z2=12则x3+y3+z3=
高分急求x2+y2+z2+2x+2y+2z+14=0,求x+y+z=?
已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z=______.
1.已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.
已知x2+4y2+z2-2x+4y-6z+11=0 求x+y+z的值
已知x+y+z=0 求x2+y2-z2分之一加x2+z2-y2分之一加y2+z2-x2分之一
实数x,y,z,若x2+y2=1,y2+z2=2,z2+x2=2,则xy+yz+zx的最小值是