已知C>0,设命题p:函数y=c^x在R上是减函数,命题q:当x属于【1/2,2】时,函数f(x)=x2-2x+3>1/
已知C>0,设命题P:函数y=c^x为减函数;命题q:当x属于[1/2,2]时,函数f(x)=x+1/x>1/c恒成立,
已知c>0,设命题p:函数y=c2为减函数,命题q:当x∈[1/2,2],函数f(x)=x+1/x>1/c恒成立.如果p
已知C>0,设命题P:函数y=c^x为减函数;命题q:当x>0时,函数f(x)=x+1/x>1/c恒成立,如果p且q为假
已知命题p:函数f(x)=ax在R上是减函数,命题q:函数g(x)=x2+(2-a)x+1在区间[-2,2]
设命题P:函数y=c^x在R上单调递减命题q:关于x的不等式x+1/(x+1)>2c对于x>-1恒成立如果p∨q是真命题
已知c大于0,设命题p;y等于c的x次幂为减函数,命题q;当x属于大括号2分之1,2时,函数fx等于x+学分之1大于
已知c>0.设p:函数y=c^x在R上是减函数;q:不等式x+|x-2c|>1的解集为R,如果这两个命题中有且仅有一个为
已知c>0,设p:函数y=c^x在R上是减函数;q:不等式x+|x-2c|>
简单逻辑用语已知c>0,设命题p:函数y=c^x为减函数.命题q:当x>0时,不等式x+1/x>1/c恒成立.如果p或q
已知c>0,设P:函数y=c^x在R上单调递减,Q:不等式|x|+|x-2c|>1的解集为R,命题一真一假,求c的取值范
已知c>0,设命题p:函数y=cx为减函数;命题q:当x∈[12
已知命题p:函数y=(c-1)x+1在R上单调递增;命题q:不等式x2-x+c≤0的解集是∅.若p且q为真命题,则实数c