斜率为k的直线经过抛物线y^2=2px的焦点F,并与抛物线相交于两点A(x1,y1),B(x2,y2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 20:56:30
斜率为k的直线经过抛物线y^2=2px的焦点F,并与抛物线相交于两点A(x1,y1),B(x2,y2)
证明:(1)y1*y2=-p^2
(2)x1*x2=(p^2)/4
证明:(1)y1*y2=-p^2
(2)x1*x2=(p^2)/4
弦AB斜率
k=(y1-y2)/(x1-x2)
=(y1-y2)/[(y1^2/2p)-(y2^2/2p)]
=2p/(y1+y2) (1)
而A、F、B三点共线,故
k=(y1-0)/(x1-p/2) (2)
由(1)、(2)得
y1/(x1-p/2)=2p/(y1+y2)
--->y1y2+y1^2=2px1-p^2
而y1^2=2px1
故y1y2=-p^2
又x1x2=(y1^2/2p)×(y2^2/2p)
=(y1y2)^2/(4p^2)
=(-p^2)^2/(4p^2)
故x1x2=(p^2)/4
k=(y1-y2)/(x1-x2)
=(y1-y2)/[(y1^2/2p)-(y2^2/2p)]
=2p/(y1+y2) (1)
而A、F、B三点共线,故
k=(y1-0)/(x1-p/2) (2)
由(1)、(2)得
y1/(x1-p/2)=2p/(y1+y2)
--->y1y2+y1^2=2px1-p^2
而y1^2=2px1
故y1y2=-p^2
又x1x2=(y1^2/2p)×(y2^2/2p)
=(y1y2)^2/(4p^2)
=(-p^2)^2/(4p^2)
故x1x2=(p^2)/4
高二数学抛物线问题在抛物线y2=2px中,有一条经过其焦点斜率为k的直线,与抛物线交于A(x1,y1),B(x2,y2)
设斜率为1的直线L经过抛物线y^2=4x的焦点,与抛物线相交于A(x1,y1);B(x2,y2)两点,则向量OA×向量O
已知抛物线y^2=2px(p>0)的焦点,斜率为2√2的直线交抛物线于A(x1,y1),B(x2,y2)(x1
斜率为43的直线l经过抛物线y2=2px的焦点F(1,0),且与抛物线相交于A、B两点.
设抛物线C:y^2=2px(p>0)的焦点为F,经过F的动直线l交抛物线C于A(x1,y1),B(x2,y2)两点,且y
抛物线y^2=4x的焦点为f,过f的直线交抛物线于a(x1,y1),b(x2,y2)两点,则y1y2/x1x2=
过抛物线y^2=2px的焦点的一条直线和此抛物线相交于两个点A(x1,y1)B(x2,y2)
经过抛物线Y^2=2px(p>0)的焦点直线交抛物线于P1(x1,y1),P2(x2,y2)两点,则X1X2=?Y1Y2
过抛物线y^2=2px(p>0)的焦点作一条直线,叫抛物线于点A(x1,y1),B(x2,y2),则(y1*y2)/(x
已知过抛物线y^2=2px(p>0)的焦点 斜率为2根号2的直线交抛物线于A(x1,y1),B(x2,y2) -(x1
过抛物线y^2=2px(p大于0)的焦点作一条直线交抛物线于A(x1,y1)B(x2,y2)则y1y2/x1x2 为(
设抛物线的方程y^2=2px(p>0),过抛物线焦点的直线交抛物线于A(x1,y1)B(x2,y2)