作业帮 > 数学 > 作业

已知函数y=tanwx在(-π/2,π/2)内是单调减函数,则w的取值范围是: A. 0〈w≤1 B. -1≤w〈0 C

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:43:56
已知函数y=tanwx在(-π/2,π/2)内是单调减函数,则w的取值范围是: A. 0〈w≤1 B. -1≤w〈0 C. w≥1 D.
已知函数y=tanwx在(-π/2,π/2)内是单调减函数,则w的取值范围是:
A. 0〈w≤1
B. -1≤w〈0
C. w≥1
D. w≤-1
为什么
已知函数y=tanwx在(-π/2,π/2)内是单调减函数,则w的取值范围是: A. 0〈w≤1 B. -1≤w〈0 C
tanx在一个周期内是增函数‘这里递减则w=π
w=-1
所以选B
再问: 为什么y的周期T=π/|w|=-π/w 所以-π/w>=π 我还没学周期T=π/|w|
再答: 没学? 没办法