已知数列{an}中,a1=1,a2=5/3,a(n+2)=5/3a(n+1)-2/3an,求数列{an}
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 02:00:04
已知数列{an}中,a1=1,a2=5/3,a(n+2)=5/3a(n+1)-2/3an,求数列{an}
由 a(n+2) = 5/3a(n+1) - 2/3an可得,
a(n+2) - a(n+1) = 2/3[a(n+1)-an]
[a(n+2)-a(n+1)] / [a(n+1)-an] = 2/3
设 [a(n+1)-an] = bn
则 b(n+1)/bn = 2/3
b1 = a2 - a1 = 2/3
所以,bn = 2/3 *(2/3)^(n-1) = (2/3)^n
所以,a(n+1)-an = (2/3)^n
那么,an-a(n-1) = (2/3)^(n-1)
a(n-1)-a(n-2) = (2/3)^(n-2)
:::
:::
a2 - a1 = 2/3
将以上n项相加,得,
a(n+1) - a1 = 2/3*[1-(2/3)^n]/(1-2/3)
a(n+1) - 1 = 2*[1-(2/3)^n]
a(n+1) = 3 - 2*(2/3)^n
即,an = 3 - 2*(2/3)^(n-1)
a(n+2) - a(n+1) = 2/3[a(n+1)-an]
[a(n+2)-a(n+1)] / [a(n+1)-an] = 2/3
设 [a(n+1)-an] = bn
则 b(n+1)/bn = 2/3
b1 = a2 - a1 = 2/3
所以,bn = 2/3 *(2/3)^(n-1) = (2/3)^n
所以,a(n+1)-an = (2/3)^n
那么,an-a(n-1) = (2/3)^(n-1)
a(n-1)-a(n-2) = (2/3)^(n-2)
:::
:::
a2 - a1 = 2/3
将以上n项相加,得,
a(n+1) - a1 = 2/3*[1-(2/3)^n]/(1-2/3)
a(n+1) - 1 = 2*[1-(2/3)^n]
a(n+1) = 3 - 2*(2/3)^n
即,an = 3 - 2*(2/3)^(n-1)
数列的,求通项的已知数列{an}中,a1=1,a2=2,a(n+2)=2/3a(n+1)+1/3an,求an
已知数列An中,A1=2,A2=5A(n+2)-3A(n+1)+2A(n)=0 求An通用公式
在数列{an}中,a1=2,a2=5,且a(n+2)-3a(n+1)+2an=0,求an
已知数列{an}中,a1=1,a2=5/3,a(n+2)=5/3a(n+1)-2/3an,求数列{an}的前n项和Sn
.感激= 已知数列{an}中,a1=3,an=(2^n)*a(n-1) (n》2,n∈N*)求数列an通项公式
在数列{an}中,已知a1=1 a2=3 a(n+2)=a(n+1)-an n属于N* 求a2008
数列{{an}中,a1=1,a2=2,3a(n+2)=2a(n+1)+an,求数列{an}的通项公式
在数列{an}中,已知a1=1/3,a1+a2+.+an/n=(2n-1)an (1)求,a2,a3,a4,并猜想an的
已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式
已知数列An满足A1=1,An=3^(n-1)+A(n-1)(n=>2).(1)求A2,A3;(2)证明An(3^n-1
已知在数列{an}中,a1=2,a(n+1)-3a(n)=3n,求an
已知数列{an}满足a1=1;an=a1+2a2+3a3+...+(n-1)a(n-1);