f(x)在[0,A]上连续且f(0)=0.如果f'(x)存在且为增函数(x(0,A)内).试证F(x)=(1/x)f(x
设f(x)在闭区间[0,A]上连续,且f(0)=0.如果f'(x)存在且为增函数(0
高数证明问题1.设函数f(x)在闭区间[0,A]上连续,且f(0)=0,如果f'(x)存在且为增函数(x属于(0,A))
设f(x)在R上有定义,在x=0点连续,且f(x/a)=f(x),其中a为小于1的常数,证明f(x)为常数函数.
已知定义在(0,+00)上的函数f(x)为增函数,且f(x)*f[f(x)+1/x]=1,则f(1)等于
如果函数f(x)的定义域为{x|x>0},且f(x)为增函数,f(xy)=f(x)+f(y)f(3)=1,且f(a)>f
f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt
设函数 f(x)在[0,2a]上连续,且 f(0) = f(2a),证明:存在Z属于[0,a),使得 f(Z) = f(
设函数F(X)在开区间(0,2a)上连续,且f(0)=f(2a),证明在零到A上至少存在一点X,使f(x)=f(a+x)
设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)
设f(x)在[a,b]上连续,在(a,b)内f(x)可导且f(x)≠0,f(b)=f(a)=0.试证对任意的实数α,存在
若函数f(x)在x=0处连续,且lim{x趋近0}f(x)/x存在,试证f(x)在x=0处可导
【高数】设函数f(x)在实轴上连续,f'(0)存在,且具有性质f(x+y)=f(x)f(y),试求出f(x)