在等腰三角形ABC中,D为直角边BC的中点,CE⊥AD于点E,交AB于点F.求证:∠ADC=△BDF
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 15:35:05
在等腰三角形ABC中,D为直角边BC的中点,CE⊥AD于点E,交AB于点F.求证:∠ADC=△BDF
作CH⊥AB于H交AD于P,
∵在Rt△ABC中AC=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°.
∴∠HCB=90°-∠CBA=45°=∠CBA.
又∵中点D,
∴CD=BD.
又∵CH⊥AB,
∴CH=AH=BH.
又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,
∴∠PAH=∠PCF.
又∵∠APH=∠CEH,
在△APH与△CEH中
∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,
∴△APH≌△CEH(ASA).
∴PH=EH,
又∵PC=CH-PH,BE=BH-HE,
∴CP=EB.
在△PDC与△EDB中
PC=EB,∠PCD=∠EBD,DC=DB,
∴△PDC≌△EDB(SAS).
∴∠ADC=∠BDE.
里面的E与F对调一下就行了
∵在Rt△ABC中AC=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°.
∴∠HCB=90°-∠CBA=45°=∠CBA.
又∵中点D,
∴CD=BD.
又∵CH⊥AB,
∴CH=AH=BH.
又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,
∴∠PAH=∠PCF.
又∵∠APH=∠CEH,
在△APH与△CEH中
∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,
∴△APH≌△CEH(ASA).
∴PH=EH,
又∵PC=CH-PH,BE=BH-HE,
∴CP=EB.
在△PDC与△EDB中
PC=EB,∠PCD=∠EBD,DC=DB,
∴△PDC≌△EDB(SAS).
∴∠ADC=∠BDE.
里面的E与F对调一下就行了
22.如图9,在等腰直角三角形ABC中,D为直角边BC的中点,CE⊥AD与点E,交AB于点F.求证∠ADC=∠BDF.
已知:在△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点F交AB于F,求证:∠ADC=∠
如图,在等腰Rt△ABC中,∩ACB=90°,点D是BC的中点,CE⊥AD于F,交AB于E.求证:∩ADC=∩EDB
在Rt△ABC中,∠ACB=90°,AC=BC,D为BC的中点,连接AD,CE⊥AD于点E,交AB于F,连接DF.求证∠
在RT△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD于E,交AB于F,连接DF,求证:∠ADC=∠
如图,已知在△ABC中.∠ACB=90°,AB=BC,D为BC中点,CE⊥AD于F,交AB于E,求证:∠ADC=∠BDE
如图,等腰三角形Rt△ABC中,∠ACB=90°,点D是BC的中点,CE⊥AD于点F,交AB于点E,CH是AB上的高,交
在△abc中,AD交BC于点D,点E是BC的中点EF∥AD交CA于点F,交AB于点G,若AD为△abc的角平分线,求证:
如图,在△ABC中,∠ABC=2∠C ,点E为AC的中点,AD⊥BC于点D,ED延长后交AB延长线于点F,求证△ABC∽
已知,如图,在Rt△ABC中∠C=90°,AC=BC,D为BC的中点,CE⊥AD,垂足为E,C交CE的延长线于点F.求证
AC=BC ,角ALB=90度,AD是三角形ABC的中线,CE垂直AD交AB于点F,求证角ADC=角BDF
已知:如图,在△ABC中,∠BAC=90°AD⊥BC于D,E是AB上的一点,AF⊥CE于F,AD交CE于G点,求证:∠B