设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:50:40
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).
证明在(a,b)内至少存在一点ξ,使得f′(ξ)>0.
证明在(a,b)内至少存在一点ξ,使得f′(ξ)>0.
证明:
∵在[a,b]连续的f(x)不恒为常数,且f(a)=f(b),
∴至少存在点c∈(a,b),使得:f(c)≠f(a)=f(b),
由题意知:f(x)在[a,c]和[c,b]满足拉格朗日中值定理,
∴存在点ξ1∈(a,c)、ξ2∈(c,b),使得:
f(c)−f(a)
c−a=f′(ξ1),
f(b)−f(c)
b−c=f′(ξ2),
又 f(c)-f(a)和f(b)-f(c)中必有一个大于0,
∴f′(ξ1)、f'(ξ2)中必有一个大于0,
即:在(a,b)内至少存在一点ξ,使得:f′(ξ)>0,证毕.
∵在[a,b]连续的f(x)不恒为常数,且f(a)=f(b),
∴至少存在点c∈(a,b),使得:f(c)≠f(a)=f(b),
由题意知:f(x)在[a,c]和[c,b]满足拉格朗日中值定理,
∴存在点ξ1∈(a,c)、ξ2∈(c,b),使得:
f(c)−f(a)
c−a=f′(ξ1),
f(b)−f(c)
b−c=f′(ξ2),
又 f(c)-f(a)和f(b)-f(c)中必有一个大于0,
∴f′(ξ1)、f'(ξ2)中必有一个大于0,
即:在(a,b)内至少存在一点ξ,使得:f′(ξ)>0,证毕.
已知函数y=f(x)在闭区间[a,b]上连续且非常数函数,在开区间(a,b)内可导
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
设f(x)和g(x)在闭区间【a,b】上连续,在开区间(a,b)内可导,且f(a)=f(b)=0.证明:至少存在一点c属
函数在闭区间[a,b]上连续,在开区间(a,b)内可导,f(a)=f(b)=0,证明至少有一点x在(a,b)内,
设函数f(x)在[a,b]上连续,且f(a)=f(b),证明:对于任意的正整数n,存在一个区间[
设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)
函数f(x)证明题如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)=0,那么在开
若函数设f(x)在(a,b)上可导,且f′(x)=0,证明函数在该区间上是一个常数.
函数f(x)在开区间(a b)内可导,f'(x)在(a b)内单调,求证:f'(x)在(a b)内连续
设f(x)在区间[a,b]上连续,则∫f(x)dx-∫f(t)dt(区间都是[a,b])的值为?
假设f(x)在区间[a,b]上连续 在(a,b)内可导 且f'(x)
高等数学证明题设函数f(x)在区间[a,b]上连续,A,B为两个常数,且AB>0,证明对任意x1,x2{x1,x2在区间