作业帮 > 数学 > 作业

第二十四题. 

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 23:25:43
第二十四题.
 
第二十四题. 
(1)如图3,
∵△OCD和△ABO都是等边三角形,且点O是线段AD的中点,
∴OD=OC=OB=OA,∠1=∠2=60°,
∴∠4=∠5.
又∵∠4+∠5=∠2=60°,
∴∠4=30°.
同理∠6=30°.
∵∠AEB=∠4+∠6,
∴∠AEB=60°.
(2)如图4,
∵△OCD和△ABO都是等边三角形,
∴OD=OC,OB=OA,∠1=∠2=60°.
又∵OD=OA,
∴OD=OB,OA=OC,
∴∠4=∠5,∠6=∠7.
∵∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC.
∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,
∴2∠5=2∠6,
∴∠5=∠6.
又∵∠AEB=∠8-∠5,∠8=∠2+∠6,
∴∠AEB=∠2+∠5-∠5=∠2,
∴∠AEB=60°.
∵∠AEB是△DEA的外角 即∠AEB=∠EDA+∠EAD
又∵△COA全等△BOD 即∠CAO=∠DBO
∴∠AEB=∠EDA+∠DBO
又∵∠BOA是△BDO的外角
即∠BOA=∠EDA+∠DBO
∴∠AEB=∠EDA+∠DBO=∠BOA
∴∠AEB=60°
为梦想而生团解答了你的提问,