求1-1/2+1/3-1/4+1/5-1/6+.+1/(2n-1)-1/2n=?n→∞
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
Sn=n(n+2)(n+4)的分项等于1/6[n(n+2)(n+4)(n+5)-(n-1)n(n+2)(n+4)]吗?
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
求极限 lim(n→∞)[根号(n^2+4n+5)-(n-1)] =
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
2^n/n*(n+1)
求lim n→∞ (1+2/n)^n+3
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
1\n(n+3)+1\(n+3)(n+6)+1\(n+6)(n+9)=1\2 n+18 n为正整数,求n的值
证明(1+2/n)^n>5-2/n(n属于N+,n>=3)
lim(n→∞) ((2n!/n!*n)^1/n的极限用定积分求