如图13,抛物线Y=AX2 BX C的顶点c(1,0)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 01:34:57
如图13,抛物线Y=AX2 BX C的顶点c(1,0)
(1)抛物线y=ax2+bx+c的顶点D(1,-4):
对称轴x=-b/2a=1……(1)
c-b^2/4a=-4……(2)
点B(3,0)代入抛物线方程得:9a+3b+c=0……(3)
由(1)至(3)式解得:a=1,b=-2,c=-3
所以抛物线方程为:y=x^2-2x-3
(2)点A为(-1,0),设点E为(0,e),依题意知道:
tan∠BAE=OE/OA=1/2
即:|e|/|-1|=1/2
所以e=±1/2,点E为(0,1/2)或者(0,-1/2)
(3)AE直线之一为:y-0=(tan∠BAE)*[x-(-1)]=(x+1)/2,即y=x/2+1/2
令点P为(p,p/2+1/2),依题意知道:AP⊥BP或者AB⊥BP
(3.1)当AP⊥BP时:BP的斜率为(p+1)/(2p-6),AP的斜率为1/2,
所以: (1/2)*(p+1)/(2p-6)=-1,解得p=11/5,点P为(11/5,8/5)
(3.2)当AB⊥BP时:BP平行于y轴,p=3,点P为(3,2).
同理,根据对称性可求得另外两点(11/5,-8/5)及(3,-2)
综上所述,所求点P为: (11/5,8/5)或者 (11/5,-8/5)或者(3,2)或者(3,-2)
对称轴x=-b/2a=1……(1)
c-b^2/4a=-4……(2)
点B(3,0)代入抛物线方程得:9a+3b+c=0……(3)
由(1)至(3)式解得:a=1,b=-2,c=-3
所以抛物线方程为:y=x^2-2x-3
(2)点A为(-1,0),设点E为(0,e),依题意知道:
tan∠BAE=OE/OA=1/2
即:|e|/|-1|=1/2
所以e=±1/2,点E为(0,1/2)或者(0,-1/2)
(3)AE直线之一为:y-0=(tan∠BAE)*[x-(-1)]=(x+1)/2,即y=x/2+1/2
令点P为(p,p/2+1/2),依题意知道:AP⊥BP或者AB⊥BP
(3.1)当AP⊥BP时:BP的斜率为(p+1)/(2p-6),AP的斜率为1/2,
所以: (1/2)*(p+1)/(2p-6)=-1,解得p=11/5,点P为(11/5,8/5)
(3.2)当AB⊥BP时:BP平行于y轴,p=3,点P为(3,2).
同理,根据对称性可求得另外两点(11/5,-8/5)及(3,-2)
综上所述,所求点P为: (11/5,8/5)或者 (11/5,-8/5)或者(3,2)或者(3,-2)
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)
如图,已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,
如图 抛物线y=ax2+bx+c的顶点为d 与y轴交于c cd:y=根号3x+2根号3
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标3.0
(2012•鞍山三模)如图,已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛
如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两
(2013•苍梧县二模)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点
(2014•福州模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标为C(1,k),与y轴的交点在
(2014•沧州二模)如图,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.
如图,抛物线y=ax2+bx+c的顶点坐标P为(1,-4√3/3),交x轴于A.B两点,交y轴于点C(0,-√3)
如图,抛物线y=ax2+bx+c与x轴交于原点和点A(2,0),顶点为M(1,-1) (1)求抛物线的解析式; (2)当