若点O和点F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 11:34:38
若点O和点F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则OP*FP的取值范围是___
解
根据双曲线的标准方程与左焦点【-2 0】
因为a^2+b^2=c^2
所以a^2+1=4
a>0所以a=√3
双曲线的方程为x^2/3-y^2=1
设点P【x y] [x≥√3]
则x^2/3-y^2=1
y^2=x^2/3-1
OP* FP=x[x+2]+y^2
=4/3x^2+2x-1
=4/3[x+3/4]^2-7/4
又因为x≥√3
x=√3有最小值3+2√3
所以取值范围是【3+2√3, + ∞)
根据双曲线的标准方程与左焦点【-2 0】
因为a^2+b^2=c^2
所以a^2+1=4
a>0所以a=√3
双曲线的方程为x^2/3-y^2=1
设点P【x y] [x≥√3]
则x^2/3-y^2=1
y^2=x^2/3-1
OP* FP=x[x+2]+y^2
=4/3x^2+2x-1
=4/3[x+3/4]^2-7/4
又因为x≥√3
x=√3有最小值3+2√3
所以取值范围是【3+2√3, + ∞)
若点O和点F(-2,0)分别是双曲线x^2/a-y^2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点.则向量
若点O和F(-2,0)分别为双曲线x^x/(a^a)-y^y=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,
点O和F分别为双曲线X^2/3-y^2=1的中心和左焦点,P为双曲线右支上任意一点,则向量OP.向量FP的取值范围是
若点O和点F(-2,0)分别为双曲线x²/a²-y²=1(a>0)的中心和左焦点,
原点O和F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点.p是双曲线右支任意一点则向量OP乘
一:若O和F点分别是椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量OPX向量FP的最大值是
1.若点O和点F分别为椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量op乘向量FP的最大值
若点O和点F分别为椭圆(x^2/4)+(y^2/3)=1的中心和左焦点,点P为椭圆上的任意一点则向量OP*向量FP的最大
已知双曲线x^2/a^2-y^2/b^2=1的左右焦点分别为F1,F2,O为双曲线的中心,P是双曲线右支上的点,三角形P
已知双曲线a平方分之x平方-y的平方=1的左焦点为F(-2,0),以O为中心,点P在右支上,
已知双曲线x^2/a^2-y^2/b^2=1 的左右焦点分别为F1,F2,O为双曲线的中心.P是双曲线右支上的点,三角形
圆锥曲线 试题 已知点F1,F2分别为双曲线x2/a2-y2=1(a>0)的左,右焦点,P为双曲线右支上的任意一点,若|