如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:49:44
如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.
(1)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系,请证明你的猜想;
(2)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系还成立吗?若成立,给出证明;若不成立,请说明理由;
(3)若AC=BC=4,设△EFP平移的距离为x,当0≤x≤8时,△EFP与△ABC重叠部分的面积为S,请写出S与x之间的函数关系式,并求出最大值.
(1)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系,请证明你的猜想;
(2)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系还成立吗?若成立,给出证明;若不成立,请说明理由;
(3)若AC=BC=4,设△EFP平移的距离为x,当0≤x≤8时,△EFP与△ABC重叠部分的面积为S,请写出S与x之间的函数关系式,并求出最大值.
(1)猜想:BQ=AP.
证明:由题意可知EF⊥FP,又EF=FP,
所以∠EPF=45°,
所以QC=CP,又∠BCQ=∠ACP=90°,AC=BC,
所以△BCQ≌△ACP,
得出BQ=AP;
(2)BQ=AP.
证明:∵∠EPF=45°,AC⊥CP,
∴CQ=CP,
又∵BC=AC,
∴Rt△BCQ≌Rt△ACP,
∴BQ=AP;
(3)当0≤x<4时,S=−
3
4x2+4x,
当4≤x≤8时,S=
1
4x(x−8)2,
当0≤x<4时,x=-
b
2a=
8
3时,S的最大值为
16
3;
当4≤x≤8时,根据对称轴左侧y随x的增大而减小,
∴x=4时,S的最大值为4.
∴当x=
8
3时,S的最大值为
16
3.
证明:由题意可知EF⊥FP,又EF=FP,
所以∠EPF=45°,
所以QC=CP,又∠BCQ=∠ACP=90°,AC=BC,
所以△BCQ≌△ACP,
得出BQ=AP;
(2)BQ=AP.
证明:∵∠EPF=45°,AC⊥CP,
∴CQ=CP,
又∵BC=AC,
∴Rt△BCQ≌Rt△ACP,
∴BQ=AP;
(3)当0≤x<4时,S=−
3
4x2+4x,
当4≤x≤8时,S=
1
4x(x−8)2,
当0≤x<4时,x=-
b
2a=
8
3时,S的最大值为
16
3;
当4≤x≤8时,根据对称轴左侧y随x的增大而减小,
∴x=4时,S的最大值为4.
∴当x=
8
3时,S的最大值为
16
3.
如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=
如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=F
如图1,△ABC的边BC在直线 上,AC ⊥BC,且AC=BC;△EFP的边FP也在直线 上,边EF与边AC重合,且EF
.如图1,△ABC的边BC在直线 上,AC ⊥BC,且AC=BC;△EFP的边FP也在直线 上,边EF与边AC重合,且E
如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,
如图,直线L是经过(1,0),且与Y轴平行的直线.Rt△ABC中直角边AC=4,BC=3将BC边在直线L上滑动,使A,B
如图,△ABC的AC边和△DEF的DF边都在直线l上,AB=EF,BC=DE,AD=CF
如图,三角形abc的ab边和三角形def的ef边都在直线MN上,且AC=DF,AE=BF,BC=DE
如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E,F分别是边AB,AC上的点,且EF//BC,AD与EF交于
如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的点,且EF∥BC,AD与EF交于点
如图所示,△ABC的AB边和△DEF的EF边都在直线MN上,且AC=DF,AE=BF,BC=DE
在等边△ABC中,AB=8,点D在边BC上,△ADE为等边三角形,且点E与点D在直线AC的两侧,过点E作EF‖BC,EF