高数球坐标问题∫∫∫zdv,其中闭区域Ω由不等式x2+y2+(x-a)2是(z-a)2
计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域
计算三重积分 ∫∫∫zdv,其中Ω是由曲面x^2+y^2=2z与平面z=2平面所围成的闭区域.
利用极坐标求积分∫∫(x2+y2)dxdy 其中D是由直线y=x,y=x+a,y=a及y=3a(a>0)所围成的区域
计算三重积分 ∫∫∫Zdv,其中Ω是由上球面Z=根号(4-x^2-y^2 )及拉面x^2+y^2=1.平面Z=0所围成的
计算三重积分∫∫∫zdv,曲面z=√(2-x^2-y^2)及z=x^2+y^2围成的闭区域
计算三重积分题计算∫∫∫zdV,其中积分空间由曲面2z=x^2+y^2,(x^2+y^2)^2=x^2-y^2及平面z=
求三重积分∫∫∫xy dv,其中Ω是由x^2+y^2=a^2,x^2+z^2=a^2围成的区域
设Ω是由曲面z=2-x2-y2及z=x2+y2所围成的有界闭区域,求Ω的体积.
求二重积分∫∫√(x2+y2)dxdy其中积分区域{(x,y)|x2+y2
计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域
利用球坐标求积分x2+y2+z2,其中区域是锥面z=x2+y2开根号与球面x2+y2+z2=r2所
∫∫∫Ω√x^2+y^2+z^2dv,Ω是由球面x^2+y^2+z^2=z所围成的区域?用球面坐标变换求上述三重积分.