在平面直角坐标系xoy中,直线L与抛物线y^=4x相交于不同的A,B两点
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 04:01:03
在平面直角坐标系xoy中,直线L与抛物线y^=4x相交于不同的A,B两点
(1)如果直线l过抛物线的焦点,求向量OA*OB的值
(2)如果向量OA*OB=-4,证明直线L必过一定点,求出该定点.
(1)如果直线l过抛物线的焦点,求向量OA*OB的值
(2)如果向量OA*OB=-4,证明直线L必过一定点,求出该定点.
1)抛物线的焦点为(1,0),y=k(x-1),带入k^2(x-1)^2=4x,整理得x^2-(2+4/k^2)+1=0,根据根与系数的关系,x1*x2=1;x1+x2=2+4/k^2;y1*y2=k^2(x1-1)(x2-1)=k^2(x1*x2-x1-x2+1)=-4,所以OA*OB=-3
2)令直线L: y=kx+b,带入抛物线方程(kx+b)^2=4x,整理得x^2-((4-2kb)/k^2)x+b^2/k^2=0;
根据根与系数的关系,x1*x2=b^2/k^2,x1+x2=(4-2kb)/k^2;y1*y2=(kx1+b)(kx2+b)=k^2x1*x2+kb(x1+x2)+b^2=b^2+(4-2kb)*kb/k^2+b^2=4kb/K^2;所以x1x2+y1y2=(b^2+4kb)/k^2=-4;整理的(2k+b)2=0;即2k+b=0;b=-2k;所以L:y=k(x-2),这条直线过点(2,0)
2)令直线L: y=kx+b,带入抛物线方程(kx+b)^2=4x,整理得x^2-((4-2kb)/k^2)x+b^2/k^2=0;
根据根与系数的关系,x1*x2=b^2/k^2,x1+x2=(4-2kb)/k^2;y1*y2=(kx1+b)(kx2+b)=k^2x1*x2+kb(x1+x2)+b^2=b^2+(4-2kb)*kb/k^2+b^2=4kb/K^2;所以x1x2+y1y2=(b^2+4kb)/k^2=-4;整理的(2k+b)2=0;即2k+b=0;b=-2k;所以L:y=k(x-2),这条直线过点(2,0)
在平面直角坐标系xoy中,直线L与抛物线y^=4x相交于不同的A,B两点
在平面直角坐标系XOY中,直线l与抛物线y^2=2X相交于A、B两点
在平面直角坐标系xoy中,直线l与抛物线y^2=2x相交于A、B两点.
数学一道抛物线的题在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点,如果直线l过抛物线的焦点,求
一道抛物线问题在平面直角坐标系xOy中,直线l与抛物线y^2=4x相交于不同的两点AB.问:如果OA与*OB=-4,证明
在平面直角坐标系xOy中,设直线l与抛物线y^2=4x相交于A,B,两点,向量OA*向量OB=-4,证明直线l经过定点~
在平面直角坐标系xOy中,过y轴正方向上一点(0,c)任作一直线,与抛物线y=x^2相交于A、B两点.
在平面直角坐标系xOy中,直线l与抛物线y^2=2x相交于A,B两点.求证;直线直线l过点T(3,0)那么
平面直角坐标系xoy中,直线L与抛物线y^2=4x交于不同的A、B两点 如果:向量OA乘向量OB=-4,证明直线L必过一
在平面直角坐标系xOy中,设之线L与抛物线y方=4x相交于A,B两点,OA→.OB→=-4.证明直线
在平面直角坐标系xOy中,直线l与抛物线y^2=2x相交于A.B两点,求证:如果直线l过点T(3,0),那么向量OA·O
高二数学 在平面直角坐标系中,直线l与抛物线y^2=2x相交于A、B两点