如何理解极限的分析性定义.要举例,正反两面都要
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/19 23:59:52
如何理解极限的分析性定义.要举例,正反两面都要
基本解释
1.指最大的限度. 2.数学名词.在高等数学中,极限是一个重要的概念. 极限可分为数列极限和函数极限,
编辑本段数列极限
定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时, |Xn - a|0(或aN时,都有xn>0(或xn0, 存在N∈Z*, 只要 n 满足 n > N ,则对于任意正整数p,都有 |X(n+p) - Xn | < ε . 这样的数列{Xn}称为柯西数列, 这种渐进稳定性与收敛性是等价的.即互为充分必要条件.
编辑本段函数极限
专业定义:
设函数f(x)在点x.的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0
1.指最大的限度. 2.数学名词.在高等数学中,极限是一个重要的概念. 极限可分为数列极限和函数极限,
编辑本段数列极限
定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时, |Xn - a|0(或aN时,都有xn>0(或xn0, 存在N∈Z*, 只要 n 满足 n > N ,则对于任意正整数p,都有 |X(n+p) - Xn | < ε . 这样的数列{Xn}称为柯西数列, 这种渐进稳定性与收敛性是等价的.即互为充分必要条件.
编辑本段函数极限
专业定义:
设函数f(x)在点x.的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0