an=1/n(n+2),Tn为an数列前n项的和,证明T
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 00:20:59
an=1/n(n+2),Tn为an数列前n项的和,证明T
题错了,应为小于3/4;
前三项的和为63/120(1/3+1/8+1/15),已大于1/2.
Tn=1/(1*3)+1/(2*4)+1/(3*5)⋯⋯+1/(n(n+2))
=(1/2)(1/1-1/3)+(1/2)(1/2-1/4)+(1/2)(1/3-1/5)+⋯⋯+
(1/2)(1/n-1/(n+2))
=(1/2)(1/1-1/3+1/2-1/4+1/3-1/5+⋯⋯+1/n-1/(n+2))
=(1/2)(3/2-1/(n-2))
小于3/4
前三项的和为63/120(1/3+1/8+1/15),已大于1/2.
Tn=1/(1*3)+1/(2*4)+1/(3*5)⋯⋯+1/(n(n+2))
=(1/2)(1/1-1/3)+(1/2)(1/2-1/4)+(1/2)(1/3-1/5)+⋯⋯+
(1/2)(1/n-1/(n+2))
=(1/2)(1/1-1/3+1/2-1/4+1/3-1/5+⋯⋯+1/n-1/(n+2))
=(1/2)(3/2-1/(n-2))
小于3/4
设数列{an}的前n项积为Tn,Tn=1-an(1)证明:数列[1/Tn}成等差数列:(2)求数列{an}的前n项和Sn
设数列{an}的前n项积为Tn,Tn=1-an.(1)证明:数列{1/Tn}成等差数列;(2)求{an}的通项.
数列{an}的前n项和为Sn=n平方+n,(1)求an,(2)令bn=2的an次方,证明bn为等比数列,并求前n项和Tn
设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
已知数列an的通项公式为an=2n-1,数列bn的前n项和为tn且满足tn=1- b
已知数列{an}的前n项和为Sn=2^n-1,求数列{1/an}的前n项和Tn
已知数列an满足前n项和Sn=n平方+1.数列bn满足bn=2\an+1,且前n项和为Tn,设Cn=T的2n+1个数—T
设数列{an}的前n项积为Tn,Tn=1-an,
已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足bn=2/(an)+1,前n项和为Tn,设Cn=T(2n+
已知数列 an 的前n项和为Sn=-3n方/2 + 105/2n 求数列|an| 的前n项和Tn
数列{An}的前n项和为Sn=-3n^2/2+205n/2.求数列{|An|}的前n项和Tn
已知数列an的前n项和为sn=n^2-25n,求数列|an|的前n项和Tn