作业帮 > 数学 > 作业

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到焦点F的最大距离为8

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:54:46
已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到焦点F的最大距离为8
问:已知圆O:x^2+y^2=1,直线l:mx+ny=1.
求证:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.
已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到焦点F的最大距离为8
(1)由x+ky-3=0得,(x-3)+ky=0,
所以直线过定点(3,0),即F为(3,0).
设椭圆C的方程为 x2a2+ y2b2=1(a>b>0),
则 {c=3a+c=8a2=b2+c2解得 {a=5b=4c=3
故所求椭圆C的方程为 x225+ y216=1.
(2)因为点P(m,n)在椭圆C上运动,所以 m225+ n216=1.
从而圆心O到直线l的距离
d= 1m2+n2= 1m2+16(1-125m2)= 1925m2+16<1.
所以直线l与圆O恒相交.
又直线l被圆O截得的弦长
L=2 r2-d2=2 1-1m2+n2=2 1-1925m2+16,由于0≤m2≤25,
所以16≤ 925m2+16≤25,则L∈[ 152,465],
即直线l被圆O截得的弦长的取值范围是[ 152,465].
分数中间的线没有显示上 自己理解呵呵
已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8. 已知直线(1+4k)x-(2-3k)y-(3+12k)=0(k属于R)所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的 已知直线(1+3m)x-(3-2m)y-(1+3m)=0 (m属于R)所经过的定点F恰好是椭圆C的一个焦点 椭圆C方程为 已知椭圆C的一个焦点F与抛物线y²=12x的焦点重合,且椭圆C上的点到焦点F的最大距离是8. 已知椭圆C的中心为原点O,F(1,0)是它的一个焦点,直线l经过点F与椭圆C交与A,B两点,l垂直于X轴,且OA*OB= 已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为1/2,点B在x轴上,A、B、F三点确定的圆C恰好与直线 一道关于椭圆的数学题已知椭圆C的中心在坐标原点,焦点在X轴,椭圆C上的点到焦点距离最大为3,最小为1若直线L:y=kx+ 已知椭圆c的中心在坐标原点.焦点在x轴上,椭圆c上的点到焦点距离的最大值为3最小值为1.若直线l:y=kx+m与椭圆c相 椭圆C的中心在坐标原点,焦点在X轴上,右焦点F的坐标(2,0) ,且点F到短轴的一个端点距离是√6 qi求椭圆C的 已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1,求椭圆C的标准方程;若直线l: 已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.求椭圆C的方程 设椭圆X^2/4+Y^2/3=1的右焦点为F,经过点F的直线L与椭圆相交於A,B两点,与椭圆的右准线相交於点C 且向量A