关于高数二重积分,为什么在S范围内积分,S:(x-R)^2+y^2+z^2=R^2,积分式为∫∫2R(x-R)dS=0?
计算曲面积分∫∫1/(x^2+y^2+z^2)ds,其中S是介于平面z=0及z=H之间的圆柱面x^2+y^2=R^2.(
关于x求积分:根号(r的平方减x的平方)dx(r为常数) ∫√(r^2-x^2)dx=?(r为常数)
求曲线积分I=∫L(e^(x^2+y^2)^(1/2)) ds,其中L为圆周x^2+y^2=R^2
求二重积分∫∫根号下(R^2 -X^2-Y^2)dxdy,其中积分区域D为圆周X^2+Y^2=RX.
设L为下半圆周x^2+y^2=R^2(y<=0),将曲线积分I=∫L(x+2y)ds化为定积分
高数 积分类型题 为何上述 相等.知道X^2+Y^2=R^2
计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2
f=∫2R(上限)~0(下限) 2x根号下R^2-(x-R)^2 dx 的积分如何等于 派R^2 的,
高数 二重积分的应用求曲面Rz=xy包含在圆柱x^2+y^2=R^2,(R>0)内部那部分面积.
曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-
算球面积我用积分法求球面积时S=∫2π*(R^2-x^2)^0.5*dx=2π^2R^2,不等于4πR^2啊,我错在哪里
计算曲面积分I=∫∫ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=R^2被x+z=