f(x)是定义在(0,+00)上的非负可导函数,满足xf'(x)-f(x)>0,对任何正数a,b,如果a>b,这必有?A
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)≤0,对任意正数a,b,若a
f(x)是定义在(0,正无穷)上的非负可导函数,且满足xf'(x)+f(x)小于等于0,对任意正数a,b,若a小于b,则
一道导数题,f(x)是定义在(0,正无穷大)上的非负可导函数,且满足xf'(x)+f(x)≤0.对任意正数a、b,若a<
f(x) 是定义在(0,+∞)上的非负可导函数,且满足xf(x)-f(x)≦0,对任意正数a,b,若a﹤b ,则必有(
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≦0,对任意正数a、b,若a<b,则必有
f(x)是定义在(0,+∞)上的可导函数,且满足xf′(x)-f(x)>0,对任意的正数a、b,若a>b,则必有( )
已知f(x)是定义在(0,+∞)上的可导函数,且满足xf′(x)-f(x)≥0,对任意正数a,b,若a>b,则必有(
有道函数填空题f(x)是定义在(0,正无穷)上的非负可导函数,且满足x*f ‘ (x)-f(x)≤0,对任意正数a、b,
函数f(x)与xf(x)在[a,b]上连续,且f(x)与xf(x)在[a,b]上的定积分都==0,
定义在R上的函数f(x)满足f(0)=1,且对任意实数a,b有f(a-b)=f(a)-b(2a-b+1),求f(x)的解
设f(x)是定义在实数集R上的函数,满足f(0)=1,且对任意实数a、b,有f(a-b)=f(a)-b(2a-b+1),
设f(x)是定义在实数集R上的函数,满足f(0)=1,且对任意实数a,b,有 f(a-b)=f(a)-b(2a-b+1)