如图1,点A是直线y=kx(k>0,且k为常数)上一动点,以A为顶点的抛物线y=(x-h)2+m交直线y=kx于另一点E
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 06:23:25
如图1,点A是直线y=kx(k>0,且k为常数)上一动点,以A为顶点的抛物线y=(x-h)2+m交直线y=kx于另一点E,
交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)(1)请写出h与m之间的关系;(用含的k式子表示)
(2)当点A运动到使EF与x轴平行时(如图2),求线段AC与OF的比值;
(3)当点A运动到使点F的位置最低时(如图3),求线段AC与OF的比值.
交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)(1)请写出h与m之间的关系;(用含的k式子表示)
(2)当点A运动到使EF与x轴平行时(如图2),求线段AC与OF的比值;
(3)当点A运动到使点F的位置最低时(如图3),求线段AC与OF的比值.
(1)易知抛物线顶点A(h,m)
因A在直线上
则有m=kh
(2)将直线方程变形为x=y/k
代入抛物线方程有y^2-(2kh+k^2)x+(h^2+m)k^2=0
令直线与抛物线交点E(xe,ye)
注意到直线与抛物线的另一交点A(h,m)
由韦达定理有ye+m=2kh+k^2
而m=kh
则ye=k^2+m
令x=0,由抛物线方程得y=h^2+m
即F点的坐标为(0,h^2+m)
因EF//x轴
则E、F等高(纵坐标相同)
即k^2+m=h^2+m,亦即k^2=h^2
注意到h>0
则h=k
此时F点的坐标为(0,k^2+m)
易知C与F等高
则AC=BC-AB=OF-AB=|yf|-|ya|=k^2+m-m=k^2(yf、ya分别为F、A的纵坐标)
而OF=|yf|=k^2+m
又m=kh,h=k
则OF=2k^2
所以AC/OF=1/2
(3)与(2)同理可得ye=k^2+kh
因E在直线y=kx上,则xe=k+h
因yf=h^2+kh=(h+k/2)^2-k^2/4
显然F点最低时其坐标为(0,-k^2/4)
而此时h=-k/2
则此时E点坐标为(k/2,k^2/2)
且此时A点坐标为(-k/2,-k^2/2)
由两点式可得直线EF:y=3k/2(x+k^2/4)
令x=h=-k/2,则y=3k^2(k-2)/8
即C点坐标为(-k/2,3k^2(k-2)/8)
(显然3k^2(k-2)/80,即0
因A在直线上
则有m=kh
(2)将直线方程变形为x=y/k
代入抛物线方程有y^2-(2kh+k^2)x+(h^2+m)k^2=0
令直线与抛物线交点E(xe,ye)
注意到直线与抛物线的另一交点A(h,m)
由韦达定理有ye+m=2kh+k^2
而m=kh
则ye=k^2+m
令x=0,由抛物线方程得y=h^2+m
即F点的坐标为(0,h^2+m)
因EF//x轴
则E、F等高(纵坐标相同)
即k^2+m=h^2+m,亦即k^2=h^2
注意到h>0
则h=k
此时F点的坐标为(0,k^2+m)
易知C与F等高
则AC=BC-AB=OF-AB=|yf|-|ya|=k^2+m-m=k^2(yf、ya分别为F、A的纵坐标)
而OF=|yf|=k^2+m
又m=kh,h=k
则OF=2k^2
所以AC/OF=1/2
(3)与(2)同理可得ye=k^2+kh
因E在直线y=kx上,则xe=k+h
因yf=h^2+kh=(h+k/2)^2-k^2/4
显然F点最低时其坐标为(0,-k^2/4)
而此时h=-k/2
则此时E点坐标为(k/2,k^2/2)
且此时A点坐标为(-k/2,-k^2/2)
由两点式可得直线EF:y=3k/2(x+k^2/4)
令x=h=-k/2,则y=3k^2(k-2)/8
即C点坐标为(-k/2,3k^2(k-2)/8)
(显然3k^2(k-2)/80,即0
如图,已知直线y=x+6与x轴,y轴分别交于点A,B,另一条直线y=kx+b(k,b为常数,k≠0)经过点C(-3,0)
如图,直线y=kx-k平方(k为常数,且k>0)与X轴交于点A,与Y轴交于点C,抛物线y=ax平方有唯一公共点B.点B在
二次函数的有关题目如图,直线y=kx-k平方(k为常数,且k>0)与X轴交于点A,与Y轴交于点C,抛物线y=ax平方有唯
已知直线y=2x与y=kx+b(k不等于0)相交于A(1,m)直线y=kx+b交轴于点B,且三角形AOB的面积为4,求的
如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另一直线y=kx+b(k不等于0)经过点C(1,0),且把三角
如图,已知直线y=-x+2与x轴,y轴分别交于点A和点B,另一直线y=kx+b(k≠0)经过点C(1,0),且把△AOB
如左图:直线y=kx+4k(k≠0)交x轴于点A,交y轴于点C,点M(2,m)为直线AC上一点,过点M的
如图,已知以A(1,0)为顶点的抛物线与y轴交于点B,过点B的直线y=kx+1与该抛物线交于另一点c(3,4),
图自己画的,请见谅,如图1,抛物线y=x²+x-4于y轴交与点A,E(0,b)为y轴上一动点,过点E的直线y=
如图,直线Y=KX+2K(K不等于0)与X轴交于点B,与双曲线y=(m+5)x^(2m+1)交于点A.C,其中点A在第一
一道初二函数题目!已知直线Y=-2X+b上点A的横坐标为2,直线Y=KX+b经过点A与X轴交于点B(2分之1 ,0)求K
在平面直角坐标系中,直线y=kx+b(k为常数且k不等于0)分别交x轴、y轴于点A、B,圆O的半径为根号5个单位长度