已知函数f(x)对一切x,y属于R,都有f(x+y)=f(x)+f(y).,f(3\1)=1,且当x>0时,f(x)>0
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 02:17:26
已知函数f(x)对一切x,y属于R,都有f(x+y)=f(x)+f(y).,f(3\1)=1,且当x>0时,f(x)>0
①如果f(x)+f(2+x)<2,求x的取值范围
①如果f(x)+f(2+x)<2,求x的取值范围
解由f(x+y)=f(x)+f(y).,
取y=0
即f(x+0)=f(x)+f(0).,
即f(x)=f(x)+f(0).,
即f(0)=f(x)-f(x)=0
由f(0)=0
即f(0)=f(x-x)=f[x+(-x)]=f(x)+f(-x)=0
即f(-x)=-f(x)
即f(x)是奇函数
下面证明函数的单调性
设x1,x2属于R,且x1>x2
则f(x1)—f(x2)
=f(x1)+f(-x2)
=f(x1-x2)
由x1>x2,即x1-x2>0
又有当x>0时,f(x)>0
即f(x1-x2)>0
即f(x1)>f(x2)
即y=f(x)在R是增函数
由f(2/3)=f(1/3)+f(1/3)=2
即不等式f(x)+f(2+x)<2,
变为f(x)+f(2+x)<f(2/3),
即f(x+2+x)
取y=0
即f(x+0)=f(x)+f(0).,
即f(x)=f(x)+f(0).,
即f(0)=f(x)-f(x)=0
由f(0)=0
即f(0)=f(x-x)=f[x+(-x)]=f(x)+f(-x)=0
即f(-x)=-f(x)
即f(x)是奇函数
下面证明函数的单调性
设x1,x2属于R,且x1>x2
则f(x1)—f(x2)
=f(x1)+f(-x2)
=f(x1-x2)
由x1>x2,即x1-x2>0
又有当x>0时,f(x)>0
即f(x1-x2)>0
即f(x1)>f(x2)
即y=f(x)在R是增函数
由f(2/3)=f(1/3)+f(1/3)=2
即不等式f(x)+f(2+x)<2,
变为f(x)+f(2+x)<f(2/3),
即f(x+2+x)
已知函数f(x)对一切实数x,y属于R都有f(x+y)=f(x)+f(y),且当x大于0时,f(x)小于0,又f(x)=
已知函数f(X)对任意X,Y属于R,总有f(X)+f(Y)=f(X+Y),且当X>0时,f(X)<0,f(1)=-三分之
高一函数【奇偶性】已知函数f(x)对一切实数x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,
已知函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)-1且当x>0时f(x)>1,f(3)=4(1)
已知函数f(x)对任意xy属于R,总有f(x+y)=f(x)+f(y),且当x=0时,f(x)
已知函数f(x)定义域在R上的函数,且对任意的x,y都有f(x+y)=f(x)+f(y)-1成立.当x>0时,f(x)>
已知函数f(x)对于一切x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时f(x)< f(1)= -2
已知函数f(x)对一切x,y属于R都有f(x+y)=f(x)+f(y)+1.f(3)=a,f(12)=
已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0
已知函数f(x)对一切实数x、y都有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0
函数f(x)对任意x.y属于R都有f(x+y)=f(x)+(y),并且当x>0时f(x)>1 (1) 证明函数f(x)在
已知定义在R的函数f(x)对任意实数x、y,都有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)