若数列{an}的前n项和为Sn,a1=2且Sn+1=4a(n-2),求证数列{an-2a(n-1)是常数列
高中数列{An}前n项和Sn且A1=0 ,S(n+1)=4An+2.求证{A(n+1)-2An}为等比数列.
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列
设数列前n项和为Sn,Sn-tS(n-1)=n,且a1=1 (1).若数列{an+1}是等比数列,求常数t的值(2){a
已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
等比数列的证明方式数列An的前n项和为Sn,A1=1,A(n+1)=2Sn+1,证明数列An是等比数列
已知数列{an}得前n项和为sn=an^2+bn(a,b为常数且a不等于0)求证数列{an}是等差数列
在数列{an}中,a1=2,sn=4A(n+1) +1 ,n属于N*.求数列{an}的前n项和Sn
数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式.
设数列 an 的前n项和为Sn,a1=1,an=Sn/n+2(n-1)(n∈N*) 求证:数列{an}为等差数列,并求a