作业帮 > 数学 > 作业

如图,在△ABC中,AB=AC,∠ABD=∠ACD,求证:AD⊥BC.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 01:03:34
如图,在△ABC中,AB=AC,∠ABD=∠ACD,求证:AD⊥BC.
如图,在△ABC中,AB=AC,∠ABD=∠ACD,求证:AD⊥BC.
证明:延长AD交BC于M,
∵AB=AC,
∴∠ABC=∠ACB,
∵∠ABD=∠ACD,
∴∠ABC-∠ABD=∠ACB-∠DCB,
即∠DBC=∠DCB,
∴DB=DC,
在△ABD和△ACD中,

AB=AC
AD=AD
BD=CD,
∴△ABD≌△ACD(SSS),
∴∠BAD=∠CAD,
∵AB=AC,
∴AD⊥BC.