作业帮 > 数学 > 作业

圆C:x^2+y^2-2x-2y+m=0与直线l:5x+12y-4=0相交于P、Q两点

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 11:55:45
圆C:x^2+y^2-2x-2y+m=0与直线l:5x+12y-4=0相交于P、Q两点
(1)若PQ(绝对值)=2√3,求m的值 (2)若CP*CQ(向量)=0,求m的值
圆C:x^2+y^2-2x-2y+m=0与直线l:5x+12y-4=0相交于P、Q两点
(1)将圆方程化为标准式:(x-1)^2+(y-1)^2=2-m,圆心C坐标(1,1),半径为√(2-m)
作CD⊥PQ于D,可以算出点C到直线l的距离CD=|5+12-4|/√(5^2+12^2)=1
RT△CDQ中,DQ=√(CQ^2-CD^2),又因为DQ=PQ/2,所以有√3=√(2-m-1),解得m=-2
(2)CP*CQ=|CP|*|CQ|*Cos∠PCQ,由于CP和CQ都不为0,那么只有Cos∠PCQ=0,即∠PCQ=90°
RT△CDQ中,∠DCQ=45°,那么CQ=√2CD=√2=√(2-m),解得m=0