在直角等腰三角形ABC的斜边AB上取两点M,N,使角MCN=45°,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 19:13:51
在直角等腰三角形ABC的斜边AB上取两点M,N,使角MCN=45°,
记AM=m,MN=x,BN=n,判断以x,m,n为边长的三角形的形状
记AM=m,MN=x,BN=n,判断以x,m,n为边长的三角形的形状
是直角三角形.
将△CNB绕点C旋转90°到△CN'A(A点旋转到B,N点旋转到N')
则△CNB≌△CN'A,
∴AN'=BN=n,N'C=NC,∠B=∠CAN'=45°,∠ACB=∠BCN,
∴∠N'AB=∠CAN'+∠CAB=∠B+∠CAB=90°,
∴△AN'M是直角三角形,
∵∠MCN=45°,
∴∠ACM+∠BCN=90°-45°=45°,
∴∠N'CM=45°=∠MCN,
∴△MN'C≌△MNC,
∴MN'=MN=x,
∴△AMN'的三边长分别为m,n,x,且N'AM是直角,
∴以x,m,n为边长的三角形是直角三角形.
将△CNB绕点C旋转90°到△CN'A(A点旋转到B,N点旋转到N')
则△CNB≌△CN'A,
∴AN'=BN=n,N'C=NC,∠B=∠CAN'=45°,∠ACB=∠BCN,
∴∠N'AB=∠CAN'+∠CAB=∠B+∠CAB=90°,
∴△AN'M是直角三角形,
∵∠MCN=45°,
∴∠ACM+∠BCN=90°-45°=45°,
∴∠N'CM=45°=∠MCN,
∴△MN'C≌△MNC,
∴MN'=MN=x,
∴△AMN'的三边长分别为m,n,x,且N'AM是直角,
∴以x,m,n为边长的三角形是直角三角形.
如图,在等腰直角△ABC的斜边AB上取两点M,N,使∠MCN=45°.记AM=m,MN=x,BN=n.请你判断以线段m,
如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN=n,BN=x,则以线段x、m、n
、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么:
已知,M、N为等腰直角三角形ABC斜边AB上的两点,且∠MCN=45度
等腰直角三角形ABC中∠ACB=90°斜边AB上取两点M、N使∠MCN=45°,则以x、m、n为边的三角形形状
已知M.N为等腰直角三角形ABC斜边AB上的两点,且∠MCN=45°,求证:AM×AM+BN×BN=MN×MN.
已知等腰直角三角形ABC,角C为90度,斜边AB上取两点M,N(M靠近A,N靠近点B).且角MCN为45度,求证:MN的
如图,△ABC是等腰直角三角形,∠ACB=90°,M,N为斜边AB上两点,如果∠MCN=45°,证明:AM,MN,NB可
等腰直角三角形ABC的斜边AB上有两点M\N,且满足MN平方=BN平方+AM平方,求角MCN的度数
已知:M,N为等腰直角三角形ABC斜边AB上两点,且角MCN为45度,求证:AM^2+BN^2=MN^2
M,N为等腰直角三角形ABC斜边AB上的两点,且角MCN等于45度,判断AM平方加BN的平方于MN平方的大小关系
如图,三角形ABC是等腰直角三角形,角ACB=90度,M、N分别为斜边AB上的两点.如果角MCN=45度,那么AM的平方