等腰直角三角形ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD,垂足为F,证明:∠CDF=∠BDE
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 14:48:29
等腰直角三角形ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD,垂足为F,证明:∠CDF=∠BDE
过B作BC的垂线交CF的延长线于H.
因为CE⊥AD
所以∠FCD+∠CDA=90°
又因为∠ACB=90°
∠CAF+∠CDA=90°
又因为∠FCD=∠CAF
又因为AC=BC,∠ACD=∠CBH=90°
所以△ACD全等△CBH
所以∠CDA=∠H,且CD=BH
又因为D为BC中点,所以CD=BD
所以BD=BH
因为等腰直角三角形ABC,所以∠CBA=45°
又因为∠CBH=90°
所以∠CBA=∠ABH=45°
所以△DBE全等△HBE
所以∠H=∠EDB
所以∠CDF=∠BDE
若对我的回答有任何疑问,可以使用百度HI我~
我一定会尽快回复的!
因为CE⊥AD
所以∠FCD+∠CDA=90°
又因为∠ACB=90°
∠CAF+∠CDA=90°
又因为∠FCD=∠CAF
又因为AC=BC,∠ACD=∠CBH=90°
所以△ACD全等△CBH
所以∠CDA=∠H,且CD=BH
又因为D为BC中点,所以CD=BD
所以BD=BH
因为等腰直角三角形ABC,所以∠CBA=45°
又因为∠CBH=90°
所以∠CBA=∠ABH=45°
所以△DBE全等△HBE
所以∠H=∠EDB
所以∠CDF=∠BDE
若对我的回答有任何疑问,可以使用百度HI我~
我一定会尽快回复的!
如图,等腰直角三角形ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD,垂足为F,试说明∠CDF=∠BDE
如图,等腰直角三角形ABC中的,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD,垂足为F,试说明∠CDF=∠B
如图,等腰三角形ABC中,ABC=90°,AC=BC,D为BC的中点,CE AD,垂足为F,试说明CDF=BDE
如图,等腰直角△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD于F交AB于E,求证:∠CDF=∠BDE
如图,在直角三角形ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD,垂足为E,BF∥AC,交CE的延长
已知,等腰直角三角形ABC中,角ACB=90度,D是BC的中点,CE垂直AD于F交AB于E,求证:角CDF=角BDE
如图,在△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD,垂足为点E,BF‖AC交CE的延长线于点F
在Rt△ABC中,∠ACB=90°AC=BC,D为BC的中点,CE⊥AD,垂足为E,BF‖AC交CE的延长线于F,求证A
如图 在rt三角形abc中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD,垂足为点E,BF平行AC,试证明:
如图,已知在△ABC中.∠ACB=90°,AB=BC,D为BC中点,CE⊥AD于F,交AB于E,求证:∠ADC=∠BDE
已知:在△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点F交AB于F,求证:∠ADC=∠
如图所示,在RT△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD,垂足为E,BF平行与AC,交CE的