作业帮 > 数学 > 作业

等腰直角三角形ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD,垂足为F,证明:∠CDF=∠BDE

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 14:48:29
等腰直角三角形ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD,垂足为F,证明:∠CDF=∠BDE
等腰直角三角形ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD,垂足为F,证明:∠CDF=∠BDE
过B作BC的垂线交CF的延长线于H.
因为CE⊥AD
所以∠FCD+∠CDA=90°
又因为∠ACB=90°
∠CAF+∠CDA=90°
又因为∠FCD=∠CAF
又因为AC=BC,∠ACD=∠CBH=90°
所以△ACD全等△CBH
所以∠CDA=∠H,且CD=BH
又因为D为BC中点,所以CD=BD
所以BD=BH
因为等腰直角三角形ABC,所以∠CBA=45°
又因为∠CBH=90°
所以∠CBA=∠ABH=45°
所以△DBE全等△HBE
所以∠H=∠EDB
所以∠CDF=∠BDE
若对我的回答有任何疑问,可以使用百度HI我~
我一定会尽快回复的!