对可导函数的间断点一定是第二类间断点这个结论的疑问
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 22:15:29
对可导函数的间断点一定是第二类间断点这个结论的疑问
既然它导函数存在第二类间断点就说明该点的左导数不能等于右导数,那既然如此在该点就违反了导数可导的条件(即左导数=右导数),那又怎么说明其在(a,b)内可导呢?
既然它导函数存在第二类间断点就说明该点的左导数不能等于右导数,那既然如此在该点就违反了导数可导的条件(即左导数=右导数),那又怎么说明其在(a,b)内可导呢?
一个函数的导函数存在第二类间断点只能说明它(指导函数)的导数(导函数的导数就是原函数的二阶导)在该点的左极限不等于右极限.也就是说这个函数的二阶导在这个点上的左极限不等于其右极限f''(x-) != f''(x+);而不能说明该点的左导数不等于右倒数(f'(x-) != f'(x+)).
我们把这样的函数称为一阶平滑的.
举个分段函数的例子给你就明白了:
设f(x)定义如下:
当x0时, f(x) = x^2.
这个函数的一阶导是存在的,且f'(x)可以这样描述:
当x
我们把这样的函数称为一阶平滑的.
举个分段函数的例子给你就明白了:
设f(x)定义如下:
当x0时, f(x) = x^2.
这个函数的一阶导是存在的,且f'(x)可以这样描述:
当x
导函数间断点问题有人说导函数没有第一类间断点,也就是说有些导函数可以有第二类间断点.可是在一点处可导的定义是,左导数等于
函数y=sin x sin1/x的间断点是 是第 类间断点?
假如x.是函数的第二类间断点,那函数一定在x.没有定义吗?
这个分段函数的间断点 为什么是跳跃型
函数间断点类型的判断对于函数y=1/1-(1/x),下列结论正确的是() A.x=0和x=1分别是第一类和第二类间断点
可去间断点和跳跃间断点的问题
可积函数可以有有限个间断点,这些间断点是第一类还是第二类
不连续一定不可导,可为什么分段函数中的间断点可以通过定义求出间断点的导数呢
可导必连续,不连续一定不可导,可为什么分段函数中的间断点可以通过定义求出间断点的导数呢
求函数的间断点,和间断点的类型
怎样判断一个第二类间断点是无穷间断点还是振荡间断点
关于导函数 与可积分1.导函数只有在第二类间断点时,才有原函数.无穷多个间断点的函数不可积分.都是积分不是自相矛盾了吗.