如图,点P为△ABC的内心,延长AP叫△ABC的外接圆于D,在AC延长线上有一点E,满足AD*=ABXAE,求证:DE是
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 08:38:45
如图,点P为△ABC的内心,延长AP叫△ABC的外接圆于D,在AC延长线上有一点E,满足AD*=ABXAE,求证:DE是切线
因为作业上图不太准 所以我没能力做 我好困呀
因为作业上图不太准 所以我没能力做 我好困呀
要证DE是切线,必须证DE^2=AE*CE
已知AD^2=ABXAE,即AE/AD=AD/AB,又∠BAD=∠DAE,
即△ABD∽△ADE
所以∠ADB=∠AED
又圆周角∠ADB=∠ACB,所以∠ACB=∠AED
所以BC‖DE
所以∠BCD=∠CDE,由∠BCD=∠BAD=∠DAC
所以∠CDE=∠DAC
所以△DAE∽△CDE
所以DE/AE=CE/DE
即DE^2=AE*CE
由切割线逆定理知DE是切线.(这个不会证,对于过直径的线也成立,故可以通过垂直关系证明)
已知AD^2=ABXAE,即AE/AD=AD/AB,又∠BAD=∠DAE,
即△ABD∽△ADE
所以∠ADB=∠AED
又圆周角∠ADB=∠ACB,所以∠ACB=∠AED
所以BC‖DE
所以∠BCD=∠CDE,由∠BCD=∠BAD=∠DAC
所以∠CDE=∠DAC
所以△DAE∽△CDE
所以DE/AE=CE/DE
即DE^2=AE*CE
由切割线逆定理知DE是切线.(这个不会证,对于过直径的线也成立,故可以通过垂直关系证明)
P是三角形ABC的内心,AP交三角形的外接圆于D,E在AC的延长线上,且AD的平方=AB乘AE,求证DE是圆O的切线
如图,在△ABC中,D为BC边的中点,延长AD至E,延长AB交CE于P,若AD=2DE,求证:AP=3AB
如图1,等边△ABC的AB边有一点P,点Q为BC延长线上一点,当AP=CQ时,连接PQ交AC于D 求证1.DP=DQ 2
如图在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P,求证PD=PE
已知如图三角形ABC中,点E是内心,延长AE交三角形的外接圆于点D求证DB=DC=DE
如图.在△ABC中.AB=AC.D点在BC的延长线上.点E在AC上.且AD=AE.DE的延长线交BC于点F.求证:DF⊥
如图在△ABC中,AB=AC,AF垂直于BA的延长线上,点D在BA延长线上,点E在AC上,且AD=AE,试探索DE与AF
如图点P为三角形ABC的内心,延长AP交三角形ABC的外接圆与D,AC一点E,AD的平方=AB*AE,求DE是圆心O的切
如图,△ABC的边AB的延长线上有一点D,过点D作DF⊥AC.求证:于F,交BC于E,且BD=CE.求证:△ABC为等腰
如图,△ABC内接于圆O,过点A的直线交圆O于点P ,交BC的延长线上于点D,AB2=AP×AD.1.求证AB=AC 2
2、 如图:在△ABC中,AB=AC,D、E分别在AB和AC的延长线上,且BD=CE.连接DE交BC于点P.求证:PD=
如图在△ABC中,AB=AC,D点在BA的延长线上,点E在AC上,且AD=AE,DE的延长线交BC于点F,求证DF⊥BC