作业帮 > 数学 > 作业

一道初等数论证明题证明:12|(n^4+2n^3+11n^2+10n)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 08:58:42
一道初等数论证明题
证明:12|(n^4+2n^3+11n^2+10n)
一道初等数论证明题证明:12|(n^4+2n^3+11n^2+10n)
n^4+2n^3+11n^2+10n
=n(n+1)[n(n+1)+10]
其中前面的n(n+1)一定是偶数,后面的n(n+1)+10也是偶数+偶数=偶数,所以整个算式肯定能被4整除.下面我们来考察这个算式能否被3整除.
若n=3k,k为整数,则算式含有n的因子,能被3整除;
同理,若n=3k+2,k为整数,算式中的n+1因子也能被3整除;
若n=3k+1,k为整数,则
n(n+1)+10
=(3k+1)(3k+2)+10
=9k^2+9k+12
仍然能被3整除,所以该算式可以被3整除.
综上,既能被4整除,又能被3整除,所以能被12整除.