求下列函数求极值6x²-x-2x³-27x6+12x+x³3x-3³求下列函数求
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 14:08:47
求下列函数求极值
6x²-x-2
x³-27x
6+12x+x³
3x-3³
求下列函数求极值
f(x)=6x²-x-2
f(x)=x³-27x
f(x)=6+12x+x³
f(x)=3x-3³
6x²-x-2
x³-27x
6+12x+x³
3x-3³
求下列函数求极值
f(x)=6x²-x-2
f(x)=x³-27x
f(x)=6+12x+x³
f(x)=3x-3³
(1)∵ f(x)=6x²-x-2
∴ f′(x)=12x-1
令 f′(x)=0.则12x-1=0
∴x=1/12
∴函数f(x)在(﹣∞,1/12)内是单调递减函数,(1/12,﹢∞)内是单调递增函数.
∴当x=1/12时,f(x)有极小值,即f(x)的极小值为:﹣25/24,无极大值.
再问: 余下的呢
再答: (——(2)∵f(x)=x ³-27x ∴f′(x)=3x ²-27 令 f′(x)=0,则3x ²-27=0 ∴x=±3 ∴函数f(x)在(﹣∞,﹣3)和(3,﹢∞)内是单调递增函数,函数f(x)在(﹣3,3)内是单调递减函数。 当x=﹣3时,f(x)有极大值,即f(x)的极大值为:54; 当x=3时,f(x)有极小值,即f(x)的极小值为:﹣54. 故f(x)=x ³-27x的极大值为54,极小值为﹣54. (3)∵f(x)=6+12x+x³ ∴ f′(x)=3x²﹢12 ∵x²≥0 ∴x²+12≧12>0 ∴ f′(x)>0恒成立 ∴f(x)在R上是增函数 ∴f(x)无极大值也无极小值。 (4)∵f(x)=3x-x³ (若是3³,此题是一次函数,且是增函数无极小值。所以我觉得应该是x ³) ∴f′(x)=3-3x² 令 f′(x)=0,则3-3x²=0 ∴x=±1 ∴函数f(x)在(﹣∞,﹣1)和(1,﹢∞)内是单调递减函数,函数f(x)在(﹣1,1)内是单调递增函数。 当x=﹣1时,f(x)有极小值,即f(x)的极小值为:﹣2 当x=1时,f(x)有极大值,即f(x)的极大值为:2. 故f(x)=3x-x ³的极大值为2,极小值为﹣2
∴ f′(x)=12x-1
令 f′(x)=0.则12x-1=0
∴x=1/12
∴函数f(x)在(﹣∞,1/12)内是单调递减函数,(1/12,﹢∞)内是单调递增函数.
∴当x=1/12时,f(x)有极小值,即f(x)的极小值为:﹣25/24,无极大值.
再问: 余下的呢
再答: (——(2)∵f(x)=x ³-27x ∴f′(x)=3x ²-27 令 f′(x)=0,则3x ²-27=0 ∴x=±3 ∴函数f(x)在(﹣∞,﹣3)和(3,﹢∞)内是单调递增函数,函数f(x)在(﹣3,3)内是单调递减函数。 当x=﹣3时,f(x)有极大值,即f(x)的极大值为:54; 当x=3时,f(x)有极小值,即f(x)的极小值为:﹣54. 故f(x)=x ³-27x的极大值为54,极小值为﹣54. (3)∵f(x)=6+12x+x³ ∴ f′(x)=3x²﹢12 ∵x²≥0 ∴x²+12≧12>0 ∴ f′(x)>0恒成立 ∴f(x)在R上是增函数 ∴f(x)无极大值也无极小值。 (4)∵f(x)=3x-x³ (若是3³,此题是一次函数,且是增函数无极小值。所以我觉得应该是x ³) ∴f′(x)=3-3x² 令 f′(x)=0,则3-3x²=0 ∴x=±1 ∴函数f(x)在(﹣∞,﹣1)和(1,﹢∞)内是单调递减函数,函数f(x)在(﹣1,1)内是单调递增函数。 当x=﹣1时,f(x)有极小值,即f(x)的极小值为:﹣2 当x=1时,f(x)有极大值,即f(x)的极大值为:2. 故f(x)=3x-x ³的极大值为2,极小值为﹣2
(2)f(x)=6x²-x-2(2)f(x)=x³-27x求下列函数的极值
求下列函数的极值 f(x)=(x-3)²(x-2)
求下列函数的极值.f(x)=[x^3 - 2]/2(x-1)^2
求下列函数的极值点与极值 y=2x^3+3x^2-12x+5
求函数f(x)=x³-3x²-9x+5的极值
求函数y=2x³+3x²-12x+5的极值点与极值
求函数f(x)=2x³-3x²-12x+21的极值
求下列函数的极值f(x)=48x-x^3
已知函数f(x)=㏑x-2x²+3x求函数极值
求下列函数极值1、y=x^2-2x+3.2、2X^3-3X^2-4.
求下列函数的极值:1:y=2-3x-5/(2x-6) (x>3) 2:y=2-3x-5/(2x-6) (x
求下列函数的极值 1)f'(x)=6x^2-x-2 2)f'(x)=3x^2-x^3