数列{xn}{yn},zn=xn*yn(n=1,2,3,4……),若数列{zn}收敛,则{xn}与{yn}是收敛还是发散
数列{xn}收敛,数列{yn}发散,则数列{xn+yn}{xn-yn}{xn·yn}收敛性如何?
X1=a>0,Y1=b>0,Xn+1=(Xn+Yn)/2,Yn+1=(Xn*Yn)^1/2,求证数列Xn,Yn收敛并求其
设数列{Xn}、{Yn}、{Zn}满足Xn
设{Xn}收敛,{Yn}发散,则{Xn*Yn}发散吗?
设Yn=X(n-1)+2Xn,n=1,2,...证明:当数列Yn收敛时,数列Xn也收敛.
数列xn单调递增,yn单调递减,lim(xn-yn)=2(n趋向于正无穷),证明Xn Yn 皆收敛.
极限存在的准则若yn≤ xn ≤zn (n=1,2,3….)limyn=a , limzn =a那么数列{x n }的极
设Xn≤a≤Yn,lim(n→∞)(Yn-Xn)=0,则Xn与Yn的收敛?
已知数列{Xn}满足Xn+1=Xn^2+Xn,X1=a(a-1),数列{Yn}满足Yn=1/(Xn+1),设Pn=X/(
“数列Xn,Yn满足lim(n->正无穷)Xn*Yn=0,若Xn有界则Yn必为无穷小 ” 这一命题正确吗 为什么
设Xn≤a≤Yn,lim(n→∞)《Yn-Xn》=0,则Xn与Yn
limxn=a lim(yn-xn)=0 则数列{yn} n趋于无穷