作业帮 > 数学 > 作业

(x*2+1)cosθ-x(cosθ-5)+3/x*2-x+1>sinθ-1对于任意X恒成立,求θ的取值范围

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 19:44:34
(x*2+1)cosθ-x(cosθ-5)+3/x*2-x+1>sinθ-1对于任意X恒成立,求θ的取值范围
如题
(x^2+1)cosθ-x(cosθ-5)+3/x^2-x+1>sinθ-1对于任意X恒成立,求θ的取值范围
分子是:(x^2+1)cosθ-x(cosθ-5)+3
分母是:x^2-x+1
(x*2+1)cosθ-x(cosθ-5)+3/x*2-x+1>sinθ-1对于任意X恒成立,求θ的取值范围
{(x^2+1)cosθ-x(cosθ-5)+3}/(x^2-x+1)>sinθ-1
{cosθ(x^2-x+1)+5x+3}/(x^2-x+1)>sinθ-1
cosθ+{5x+3}/(x^2-x+1)>sinθ-1
1+{5x+3}/(x^2-x+1)>sinθ-cosθ
(x+2)^2/(x^2-x+1)>sinθ-cosθ
要使上式恒成立,有sinθ-cosθ小于左边的最小值
而左边分母恒大于0,分子大于等于0,所以左边大于等于0,即sinθ-cosθ