证明偶函数的对称区间上的单调性相反
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 19:06:26
证明偶函数的对称区间上的单调性相反
阿- -、
介个,
我只有两个地方不太明白,急阿
设y=f(x)是偶函数,则f(-x)=f(x)
若x1>x2>0,则-x1f(x2),即f(x)递减
同理可证f(x)在正半轴为减函数则负半轴为增函数
这里面 ,为什么要设正半轴单调递增?就是一个证明必须的格式么?
最后一步,为什么f(-x1)>f(x2),即f(x)递减?
判断递减怎么判断?
阿- -、
介个,
我只有两个地方不太明白,急阿
设y=f(x)是偶函数,则f(-x)=f(x)
若x1>x2>0,则-x1f(x2),即f(x)递减
同理可证f(x)在正半轴为减函数则负半轴为增函数
这里面 ,为什么要设正半轴单调递增?就是一个证明必须的格式么?
最后一步,为什么f(-x1)>f(x2),即f(x)递减?
判断递减怎么判断?
设y=f(x)是偶函数,则f(-x)=f(x)
若x1>x2>0,则-x1f(x2),即f(x)递减
同理可证f(x)在正半轴为减函数则负半轴为增函数
这里面 ,为什么要设正半轴单调递增?就是一个证明必须的格式么?
答:“不妨设”的意思是无论设为单调递增还是单调递减都可以.
不妨设f(x)在X正半轴上单调递减,则f(x1)<f(x2),
所以f(-x1)<f(-x2),即f(x)在X负半轴递增
你可以将f(x)设为简单的函数如:x²,-x²这2个函数一个是在正半轴单调递增,一个递减.从图象上可以看出偶函数在x正半轴负半轴单调性相反.
最后一步,为什么f(-x1)>f(x2),即f(x)递减?
这里少了一个负号f(-x1)>f(-x2),-x1、-x2在x负半轴即
-x1
若x1>x2>0,则-x1f(x2),即f(x)递减
同理可证f(x)在正半轴为减函数则负半轴为增函数
这里面 ,为什么要设正半轴单调递增?就是一个证明必须的格式么?
答:“不妨设”的意思是无论设为单调递增还是单调递减都可以.
不妨设f(x)在X正半轴上单调递减,则f(x1)<f(x2),
所以f(-x1)<f(-x2),即f(x)在X负半轴递增
你可以将f(x)设为简单的函数如:x²,-x²这2个函数一个是在正半轴单调递增,一个递减.从图象上可以看出偶函数在x正半轴负半轴单调性相反.
最后一步,为什么f(-x1)>f(x2),即f(x)递减?
这里少了一个负号f(-x1)>f(-x2),-x1、-x2在x负半轴即
-x1
证明函数f(x)=4/x^在区间(0,+∞)上的单调性
若函数y=f(x)是偶函数,且在区间(-∞,0〕上单调递增,f(0)=0,试判断y=|f(x)|的单调性,并根据定义证明
判断函数f(x)=x平方分之4在区间(0,正无穷)上的单调性,并用函数单调性定义加以证明
高一数学:奇函数在一区间上单调递增,则在对称区间上也是单调递增.偶函数相反 怎么证明啊?
证明:定义在对称区间上的任何函数都可唯一表示成一个偶函数与一个奇函数之和.
函数的单调性证明
判断函数f (x)=x/x^2-1在区间(-1,1)上的单调性,给出证明
函数f(X)=x+2/x在区间上{-根号二,0)的单调性,并加以证明
判断函数f(x)=x/x^2-1在区间(-1,1)上的单调性,并给出证明
判断函数f(X)=x/x²-1在区间(-1,1)上的单调性,并给出证明
函数y=x平方-4x在区间2到正无穷上的单调性并证明
判断函数y=根号x在区间[0,正无限大]上的单调性,并证明结论.