关于级数的证明题设f(x)是偶函数,在x=0的某个领域内有连续的二阶导数,且f(0)=1,f''(0)=2证明:∑[f(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 21:07:38
关于级数的证明题
设f(x)是偶函数,在x=0的某个领域内有连续的二阶导数,且f(0)=1,f''(0)=2
证明:∑[f(1/n)-1]绝对收敛
n从1取到无穷
设f(x)是偶函数,在x=0的某个领域内有连续的二阶导数,且f(0)=1,f''(0)=2
证明:∑[f(1/n)-1]绝对收敛
n从1取到无穷
由f(x)为偶函数,且在x = 0可导,有:
f'(0) = lim{x → 0} (f(x)-f(0))/x = lim{x → 0} (f(-x)-f(0))/(-x) = lim{x → 0} (f(x)-f(-x))/(2x) = 0.
又f(x)在x = 0的某邻域内二阶连续可导,有Peano余项的Taylor展开:
f(x) = f(0)+f'(0)x+f"(0)x²/2+o(x²) = 1+x²+o(x²).
代入x = 1/n得f(1/n) = 1+1/n²+o(1/n²),即n → ∞时(f(1/n)-1)/(1/n²) = 1+o(1) → 1.
根据比较判别法,由正项级数∑1/n²收敛,可知∑(f(1/n)-1)绝对收敛.
f'(0) = lim{x → 0} (f(x)-f(0))/x = lim{x → 0} (f(-x)-f(0))/(-x) = lim{x → 0} (f(x)-f(-x))/(2x) = 0.
又f(x)在x = 0的某邻域内二阶连续可导,有Peano余项的Taylor展开:
f(x) = f(0)+f'(0)x+f"(0)x²/2+o(x²) = 1+x²+o(x²).
代入x = 1/n得f(1/n) = 1+1/n²+o(1/n²),即n → ∞时(f(1/n)-1)/(1/n²) = 1+o(1) → 1.
根据比较判别法,由正项级数∑1/n²收敛,可知∑(f(1/n)-1)绝对收敛.
级数收敛证明设f(x)在x=0的某一邻域内具有二阶连续导数,x->0时,f(x)/x->0,证明级数∑f(1/n)绝对收
设f(x)在点x=0的某一邻域内具有二阶连续导数,且limx→0f(x)x=0,证明级数∞n=1f(1n)绝对收敛
设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明:
f(x)在点x=0处具有连续的二阶导数,证明f
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明
设f(x)在(-1,1)内具有二阶连续导数,且f''(x)不等于0,证明:
若f(x)是偶函数且f'(0)(f(0)的导数)存在,证明:f'(0)=0.
设f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,f(x)不恒为零.证明:max|f(x)|
设f在x=0的某个邻域内有定义,且f"(0)存在,证明∑(n从1到无穷)f(1/n)绝对收敛的充分必要条件是f(0)=f
有关高数的证明题设函数 f(x)在[0,∞)上有二阶连续导数,且对任意x>=0有 f(x)的二阶导数>=k,其中k>0为
设f(x)在【0,1】上有二阶导数,f(1)=0,F(x)=x^2f(x),证明在(0,1)内至少有一点的二阶导数等于0
设曲线y=f(x)在原点与X轴相切,函数f(x)具有连续的二阶导数,且x≠0时,f的一阶导数不等于0,证明该曲线在原点处