近世代数证明题 证明:数集Z[i]={a+bi|a.Z} 关于数的加法与乘法构成一个有单位元的交换环.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 07:16:28
近世代数证明题 证明:数集Z[i]={a+bi|a.Z} 关于数的加法与乘法构成一个有单位元的交换环.
设x=a+bi,y=c+di (a,b,c,d是整数),则x+y=a+c+(b+d)i属于Z[i]
0属于Z[i],且x+0=0+x=x
对任意x=a+bi属于Z[i],有-a-bi属于Z[i],且x+(-a-bi)=0
Z[i]是复数域的子集,由复数域上加法的结合律以及上述的第一点(z[i]对加法的封闭性)得到z[i]上加法啊结合律
综上四点,z[i]是群
5.x+y=a+c+(b+d)i=c+a=(d+b)i=y+x,所以z[i]上的加法可交换
6.xy=(a+bi)(c+di)=ac-bd+(ad+bc)i属于z[i]
7.同上述第四点,可知z[i]上的乘法满足结合律和交换律
8.1属于z[i],1x=x1=x
综上,Z[i]={a+bi|a.Z} 关于数的加法与乘法构成一个有单位元的交换环.
0属于Z[i],且x+0=0+x=x
对任意x=a+bi属于Z[i],有-a-bi属于Z[i],且x+(-a-bi)=0
Z[i]是复数域的子集,由复数域上加法的结合律以及上述的第一点(z[i]对加法的封闭性)得到z[i]上加法啊结合律
综上四点,z[i]是群
5.x+y=a+c+(b+d)i=c+a=(d+b)i=y+x,所以z[i]上的加法可交换
6.xy=(a+bi)(c+di)=ac-bd+(ad+bc)i属于z[i]
7.同上述第四点,可知z[i]上的乘法满足结合律和交换律
8.1属于z[i],1x=x1=x
综上,Z[i]={a+bi|a.Z} 关于数的加法与乘法构成一个有单位元的交换环.
z为整数集,在z上定义二元运算~:b=a+b+a*b,其中+,*是数的加法和乘法,则代数系统的幺元和单位元分别是?
近世代数证明题 证明:Q[i]={a+bi|a,b∈Q} 为域
高一集合证明题设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z
一道近世代数题目设G是一个具有乘法运算的非空有限集合,证明:如果G满足结合律,有左单位元,且右消去律成立,则G是一个群
z=a+bi 证明 |z|^2 = (a+bi)(a-bi) [追加30]
证明:由所有复数a+bi(a、b是整数)作成的集合R对于普通加法和乘法来说是一个环
设环R=Z(i)={a+bi | a,b是整数},A=(1- i)是R的理想,证明剩余类环R/A是一个域
近世代数 关于环的问题:Q[X] Z[(-1)^1/2]呢?
近世代数:设|M|>1,证明:集合M的全体非双射变换关于变换的乘法不能作成群
整数环Z的理想有-----个.近世代数的高手请回答
请教:近世代数证明题,
证明全体代数数构成的集合是一个数域