1^2+2^2+3^2+…+(n-1)^2+n^2=?
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
2^n/n*(n+1)
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n n)) 当N越于无穷大
1 + (n + 1) + n*(n + 1) + n*n + (n + 1) + 1 = 2n^2 + 3n + 3
求极限Xn=n/(n^2+1)+n/(n^2+2)+n/(n^2+3)+……+n/(n^2+n),
证明(1+2/n)^n>5-2/n(n属于N+,n>=3)
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
化简(n+1)(n+2)(n+3)
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
证明:1+2C(n,1)+4C(n,2)+...+2^nC(n,n)=3^n .(n∈N+)
数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
用数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)