同余式x^2=29(mod 35)的所有解怎么求?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 17:27:19
同余式x^2=29(mod 35)的所有解怎么求?
如题,这个题的解跟29mod5 和 29mod7的逆有什么关系?
如题,这个题的解跟29mod5 和 29mod7的逆有什么关系?
这个方程等价于同余方程组:x² ≡ 29 (mod 5),x² ≡ 29 (mod 7).
因为若x满足x² ≡ 29 (mod 35),易见x也满足上述方程组.
反过来,若x满足上述方程组,则x²-29被5和7整除,于是被35整除,即有x² ≡ 29 (mod 35).
分别求解方程组中的两个方程.
x² ≡ 29 ≡ 4 (mod 5),即5 | x²-4 = (x-2)(x+2),得x ≡ ±2 (mod 5).
x² ≡ 29 ≡ 1 (mod 7),即7 | x²-1 = (x-1)(x+1),得x ≡ ±1 (mod 7).
于是只需求解以下4个线性同余方程组(其实只需解前两个,后两个取负号):
x ≡ 2 (mod 5),x ≡ 1 (mod 7);
x ≡ 2 (mod 5),x ≡ -1 (mod 7);
x ≡ -2 (mod 5),x ≡ 1 (mod 7);
x ≡ -2 (mod 5),x ≡ -1 (mod 7).
解得x ≡ ±8,±13 (mod 35).
总结起来,需要解两类方程.
一类是mod质数(方幂)的二次同余方程.
对较小的质数可以枚举求解,上面也是这么做的(两个方程的解都可以直接看出来).
对较大的质数可利用借助Fermat小定理构造解,但是手算比较困难.
另一类是中国剩余定理型的线性同余方程组.
这个也有系统的方法,你应该也了解吧.
因为若x满足x² ≡ 29 (mod 35),易见x也满足上述方程组.
反过来,若x满足上述方程组,则x²-29被5和7整除,于是被35整除,即有x² ≡ 29 (mod 35).
分别求解方程组中的两个方程.
x² ≡ 29 ≡ 4 (mod 5),即5 | x²-4 = (x-2)(x+2),得x ≡ ±2 (mod 5).
x² ≡ 29 ≡ 1 (mod 7),即7 | x²-1 = (x-1)(x+1),得x ≡ ±1 (mod 7).
于是只需求解以下4个线性同余方程组(其实只需解前两个,后两个取负号):
x ≡ 2 (mod 5),x ≡ 1 (mod 7);
x ≡ 2 (mod 5),x ≡ -1 (mod 7);
x ≡ -2 (mod 5),x ≡ 1 (mod 7);
x ≡ -2 (mod 5),x ≡ -1 (mod 7).
解得x ≡ ±8,±13 (mod 35).
总结起来,需要解两类方程.
一类是mod质数(方幂)的二次同余方程.
对较小的质数可以枚举求解,上面也是这么做的(两个方程的解都可以直接看出来).
对较大的质数可利用借助Fermat小定理构造解,但是手算比较困难.
另一类是中国剩余定理型的线性同余方程组.
这个也有系统的方法,你应该也了解吧.
解同余式组x≡-2(mod12)x≡6(mod 10) x≡1(mod 15)
证明:对任意素数p,同余式(x^2 - 2)(x^2 - 17)(x^2 - 34)≡0(mod p)有解
如题,解同余式组x≡5(mod3) x≡2(mod7),求详尽解题过程,顺带问一下解同余式组一般用到哪些方法?拜谢!
关于同余式的证明证明同余式(-4)^((p-1)/4) = 1 (mod p) ,其中p为模4余1的素数
Mod(m,3)=2,求m怎么解
一道同余式证明题,证两个结论 2^1092≡1 (mod 1093^2) 3^1092≠1 (mod 1093^2)
y=x(mod
IF(MOD(ROW(),3)=1,a,IF(MOD(ROW(),3)=2,b,""))这个函数怎么解
3 *x mod 40 =1,求X是多少
怎么证明n是奇数,2^x mod n=1一定有一个
f(x)=x(mod
初等数论证明:x^b=x mod p 解的个数