函数f(x)在[0,1]上二次可导,f(0)=2,f'(0)=-2,f(1)=1,证明存在c属于(0,1),使得f(c)
设函数f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x属于【0,1/2】,使得f(x)=f(x+1/2
设函数f(x)在区间「0,2」上连续可导,f(0)=0=f(2),证明存在ξ属于(0,2),使得f'(ξ)=2f(ξ)
设f(x)在【0,1】上连续,(0,1)可导.f(0)=0 ,f(1)=1.证明:存在C属于(0,1)使f(c)=1-c
设函数 f(x)在[0,2a]上连续,且 f(0) = f(2a),证明:存在Z属于[0,a),使得 f(Z) = f(
设函数f(x)在闭区间[0,1]上连续,且f(0)=f(1),证明至少存在一点a属于[0,1],使得f(a+1/2)=f
设函数f(x)在区间【0,1】上可导,且f(1)=0,证明至少存在一点$在(0,1)内,使得2$f($)+$*$f'$)
不等式证明题设f(x)在区间[0,1]上二阶可微,且f'(0)=f'(1)=0 证明存在c属于(0,1)满足f''(c)
函数f,g在[a,b]连续,(a,b)可导,f(a)=f(b)=0,证明存在c∈(a,b)使得f'(
求教一个微分中值定理的证明题 f(x)在[0,1]可导,f(1)=f(0)=0 证明存在n属于(0,1)使得f(n)+n
设f(x)在[a,b]上连续,在(a,b)可导,且f(a)=f(b)=0,证明存在c属于(a,b),使f'(c)+f(c
已知二次函数f(x)=ax^2+bx+c(a.b.c属于R) f(-2)=f(0)=0 f(x)的最小值为-1
设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)